Visible-light-active titania photocatalysts:: The case of N-doped TiO2s-properties and some fundamental issues

被引:214
作者
Emeline, Alexei V. [2 ]
Kuznetsov, Vyacheslav N. [2 ]
Rybchuk, Vladimir K. [2 ]
Serpone, Nick [1 ]
机构
[1] Univ Pavia, Dipartimento Chim Organ, I-27100 Pavia, Italy
[2] St Petersburg State Univ, Dept Photon, Fock Res Inst Phys, St Petersburg, Russia
关键词
D O I
10.1155/2008/258394
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This article briefly reviews some factors that have impacted heterogeneous photocatalysis with next generation TiO2 photocatalysts, along with some issues of current debate in the fundamental understanding of the science that underpins the field. Preparative methods and some characteristics features of N-doped TiO2 are presented and described briefly. At variance are experimental results and interpretations of X-ray photoelectron spectra (XPS) with regard to assignments of N 1s binding energies in N-doped TiO2 systems. Relative to pristine nominally clean TiO2 with absorption edges at 3.2 eV (anatase) and 3.0 eV (rutile), N-doped TiO(2)s display red-shifted absorption edges into the visible spectral region. Several workers have surmised that the (intrinsic) band gap of TiO2 is narrowed by coupling dopant energy states with valence band (VB) states, an inference based on DFT computations. With similar DFT computations, others concluded that red-shifted absorption edges originate from the presence of localized intragap dopant states above the upper level of the VB band. Recent analyses of absorption spectral features in the visible region for a large number of doped TiO2 specimens, however, have suggested a common origin owing to the strong similarities of the absorption features, and this regardless of the preparative methods and the nature of the dopants. The next generation of (doped) TiO2 photocatalysts should enhance overall process photoefficiencies (in some cases), since doped TiO(2)s absorb a greater quantity of solar radiation. The fundamental science that underpins heterogeneous photocatalysis with the next generation of photocatalysts is a rich playing field ripe for further exploration. Copyright (c) 2008 Alexei V. Emeline et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
引用
收藏
页数:19
相关论文
共 70 条
[1]   Phase-compositional control and visible light photocatalytic activity of nitrogen-doped titania via solvothermal process [J].
Aita, Y ;
Komatsu, M ;
Yin, S ;
Sato, T .
JOURNAL OF SOLID STATE CHEMISTRY, 2004, 177 (09) :3235-3238
[2]   The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation [J].
Anpo, M ;
Takeuchi, M .
JOURNAL OF CATALYSIS, 2003, 216 (1-2) :505-516
[3]   Visible-light photocatalysis in nitrogen-doped titanium oxides [J].
Asahi, R ;
Morikawa, T ;
Ohwaki, T ;
Aoki, K ;
Taga, Y .
SCIENCE, 2001, 293 (5528) :269-271
[4]   Electronic and optical properties of anatase TiO2 [J].
Asahi, R ;
Taga, Y ;
Mannstadt, W ;
Freeman, AJ .
PHYSICAL REVIEW B, 2000, 61 (11) :7459-7465
[5]   Nitrogen-containing TiO2 photocatalysts -: Part 2.: Photocatalytic behavior under sunlight excitation [J].
Belver, C. ;
Bellod, R. ;
Stewart, S. J. ;
Requejo, F. G. ;
Fernandez-Garcia, M. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2006, 65 (3-4) :309-314
[6]   Nitrogen-containing TiO2 photocatalysts -: Part 1.: Synthesis and solid characterization [J].
Belver, C. ;
Bellod, R. ;
Fuerte, A. ;
Fernandez-Garcia, M. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2006, 65 (3-4) :301-308
[7]   Light-induced charge separation in anatase TiO2 particles [J].
Berger, T ;
Sterrer, M ;
Diwald, O ;
Knözinger, E ;
Panayotov, D ;
Thompson, TL ;
Yates, JT .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (13) :6061-6068
[8]   Reply to "Comment on "Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles" [J].
Burda, C ;
Gole, J .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (13) :7081-7082
[9]   Enhanced nitrogen doping in TiO2 nanoparticles [J].
Burda, C ;
Lou, YB ;
Chen, XB ;
Samia, ACS ;
Stout, J ;
Gole, JL .
NANO LETTERS, 2003, 3 (08) :1049-1051
[10]   Theoretical study of F-type color center in rutile TiO2 [J].
Chen, J ;
Lin, LB ;
Jing, FQ .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2001, 62 (07) :1257-1262