Synaptotagmin mutants Y311N and K326/327A alter the calcium dependence of neurotransmission

被引:22
作者
Catherine, CR
Stevens, CF
Sullivan, JM
Zhu, YL
机构
[1] Univ Washington, Sch Med, Dept Physiol & Biophys, Seattle, WA 98195 USA
[2] Salk Inst Biol Studies, Mol Neurobiol Lab, La Jolla, CA 92037 USA
[3] Salk Inst Biol Studies, Howard Hughes Med Inst, La Jolla, CA 92037 USA
关键词
D O I
10.1016/j.mcn.2005.03.015
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Synaptotagmin I, a calcium-binding synaptic vesicle protein, is thought to act as the calcium sensor for fast neurotransmission, but what synaptotagmin I does, upon binding calcium, to trigger exocytosis is still unknown. To begin to examine the role of synaptotagmin I's interactions with calcium-dependent binding partners, three mutant versions of synaptotagmin I reported to affect calcium-dependent selfoligomerization (Y311N, K327A, and K326/327A) were expressed in cultured mouse hippocampal neurons lacking endogenous synaptotagmin I, and effects on neurotransmission were evaluated by comparison with transmission rescued by wild-type synaptotagmin I. All three mutants reduced transmitter release. To separate effects on calcium binding from effects on calcium-dependent oligomerization, we measured the calcium dependence of exocytosis for two of the mutants. Both showed apparent calcium affinity much lower than wild-type, a reduction sufficient to account for the neurotransmission defects. We conclude that self-oligomerization is unlikely to play any significant role in triggering synaptic vesicle exocytosis. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:462 / 470
页数:9
相关论文
共 32 条
[1]   Fusion pore dynamics are regulated by synaptotagmin•t-SNARE interactions [J].
Bai, JH ;
Wang, CT ;
Richards, DA ;
Jackson, MB ;
Chapman, ER .
NEURON, 2004, 41 (06) :929-942
[2]   EXCITATORY AND INHIBITORY AUTAPTIC CURRENTS IN ISOLATED HIPPOCAMPAL-NEURONS MAINTAINED IN CELL-CULTURE [J].
BEKKERS, JM ;
STEVENS, CF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (17) :7834-7838
[3]   SYNTAXIN - A SYNAPTIC PROTEIN IMPLICATED IN DOCKING OF SYNAPTIC VESICLES AT PRESYNAPTIC ACTIVE ZONES [J].
BENNETT, MK ;
CALAKOS, N ;
SCHELLER, RH .
SCIENCE, 1992, 257 (5067) :255-259
[4]   Delineation of the oligomerization, AP-2 binding, and synprint binding region of the C2B domain of synaptotagmin [J].
Chapman, ER ;
Desai, RC ;
Davis, AF ;
Tornehl, CK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (49) :32966-32972
[5]   CA2+ REGULATES THE INTERACTION BETWEEN SYNAPTOTAGMIN AND SYNTAXIN-1 [J].
CHAPMAN, ER ;
HANSON, PI ;
AN, S ;
JAHN, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (40) :23667-23671
[6]   The C2B domain of synaptotagmin is a Ca2+-sensing module essential for exocytosis [J].
Desai, RC ;
Vyas, B ;
Earles, CA ;
Littleton, JT ;
Kowalchyck, JA ;
Martin, TFJ ;
Chapman, ER .
JOURNAL OF CELL BIOLOGY, 2000, 150 (05) :1125-1135
[7]   THE EFFECT ON SYNAPTIC PHYSIOLOGY OF SYNAPTOTAGMIN MUTATIONS IN DROSOPHILA [J].
DIANTONIO, A ;
SCHWARZ, TL .
NEURON, 1994, 12 (04) :909-920
[8]   CO-OPERATIVE ACTION OF CALCIUM IONS IN TRANSMITTER RELEASE AT NEUROMUSCULAR JUNCTION [J].
DODGE, FA ;
RAHAMIMO.R .
JOURNAL OF PHYSIOLOGY-LONDON, 1967, 193 (02) :419-&
[9]   The tandem C2 domains of synaptotagmin contain redundant Ca2+ binding sites that cooperate to engage t-SNAREs and trigger exocytosis [J].
Earles, CA ;
Bai, JH ;
Wang, P ;
Chapman, ER .
JOURNAL OF CELL BIOLOGY, 2001, 154 (06) :1117-1123
[10]   Drosophila AD3 mutation of synaptotagmin impairs calcium-dependent self-oligomerization activity [J].
Fukuda, M ;
Kabayama, H ;
Mikoshiba, K .
FEBS LETTERS, 2000, 482 (03) :269-272