Terahertz transmission through ensembles of subwavelength-size metallic particles

被引:37
作者
Chau, KJ [1 ]
Elezzabi, AY [1 ]
机构
[1] Univ Alberta, Dept Elect & Comp Engn, Ultrafast Photon & NanoOpt Lab, Edmonton, AB T6G 2V4, Canada
来源
PHYSICAL REVIEW B | 2005年 / 72卷 / 07期
关键词
D O I
10.1103/PhysRevB.72.075110
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We demonstrate that terahertz radiation can coherently propagate through dense ensembles of subwavelength-size metallic particles over distances that are orders of magnitude greater than the skin depth. Collectively, the metal particle ensembles behave similar to a dispersive lossy dielectric. To fully explore this phenomenon, we investigate the effects of particle size, shape, metal type, and conductivity on the temporal characteristics of the transmitted radiation. In addition, we show that the transmission preserves the incident polarization state. Such an observation indicates that electromagnetic energy propagation across the extent of the particle ensemble is of a coherent nature. Finite difference time domain simulations of electromagnetic wave propagation in random metallic media support the experimental observations and show that electromagnetic energy transport is due to near-field plasmonic coupling between particles.
引用
收藏
页数:9
相关论文
共 16 条
[1]   PICOSECOND PHOTOCONDUCTING HERTZIAN DIPOLES [J].
AUSTON, DH ;
CHEUNG, KP ;
SMITH, PR .
APPLIED PHYSICS LETTERS, 1984, 45 (03) :284-286
[2]   Coherent plasmonic enhanced terahertz transmission through random metallic media [J].
Chau, KJ ;
Dice, GD ;
Elezzabi, AY .
PHYSICAL REVIEW LETTERS, 2005, 94 (17)
[3]   Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method [J].
Futamata, M ;
Maruyama, Y ;
Ishikawa, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (31) :7607-7617
[4]   Free-space detection of terahertz radiation using crystalline and polycrystalline ZnSe electro-optic sensors [J].
Holzman, JF ;
Vermeulen, FE ;
Irvine, SE ;
Elezzabi, AY .
APPLIED PHYSICS LETTERS, 2002, 81 (12) :2294-2296
[5]   The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment [J].
Kelly, KL ;
Coronado, E ;
Zhao, LL ;
Schatz, GC .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (03) :668-677
[6]   Surface-plasmon resonances in single metallic nanoparticles [J].
Klar, T ;
Perner, M ;
Grosse, S ;
von Plessen, G ;
Spirkl, W ;
Feldmann, J .
PHYSICAL REVIEW LETTERS, 1998, 80 (19) :4249-4252
[7]   Spectral response of plasmon resonant nanoparticles with a non-regular shape [J].
Kottmann, JP ;
Martin, OJF ;
Smith, DR ;
Schultz, S .
OPTICS EXPRESS, 2000, 6 (11) :213-219
[8]   Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles [J].
Krenn, JR ;
Dereux, A ;
Weeber, JC ;
Bourillot, E ;
Lacroute, Y ;
Goudonnet, JP ;
Schider, G ;
Gotschy, W ;
Leitner, A ;
Aussenegg, FR ;
Girard, C .
PHYSICAL REVIEW LETTERS, 1999, 82 (12) :2590-2593
[9]   Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance [J].
Lamprecht, B ;
Schider, G ;
Lechner, RT ;
Ditlbacher, H ;
Krenn, JR ;
Leitner, A ;
Aussenegg, FR .
PHYSICAL REVIEW LETTERS, 2000, 84 (20) :4721-4724
[10]   Magnetic response of metamaterials at 100 terahertz [J].
Linden, S ;
Enkrich, C ;
Wegener, M ;
Zhou, JF ;
Koschny, T ;
Soukoulis, CM .
SCIENCE, 2004, 306 (5700) :1351-1353