On the interplay of magnetic and molecular forces in Curie-Weiss ferrofluid models

被引:12
作者
Georgii, HO [1 ]
Zagrebnov, V
机构
[1] Univ Munich, Math Inst, D-80333 Munich, Germany
[2] Univ Mediterranee, CPT, Dept Phys, CNRS, F-13288 Marseille 09, France
关键词
classical continuous system; first-order phase transition; mean-field; tricritical; large deviations; maximum entropy principle;
D O I
10.1023/B:JOSS.0000026728.01594.18
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a mean-field continuum model of classical particles in Rd With Ising or Heisenberg spins. The interaction has two ingredients, a ferromagnetic spin coupling and a spin-independent molecular force. We show that a feedback between these forces gives rise to a first-order phase transition with simultaneous jumps of particle density and magnetization per particle, either at the threshold of ferromagnetic order or within the ferromagnetic region. If the direct particle interaction alone already implies a phase transition, then the additional spin coupling leads to an even richer phase diagram containing triple (or higher order) points.
引用
收藏
页码:79 / 107
页数:29
相关论文
共 33 条
[1]   A GENERALIZED QUASIAVERAGE APPROACH TO THE DESCRIPTION OF THE LIMIT STATES OF THE N-VECTOR CURIE-WEISS FERROMAGNET [J].
ANGELESCU, N ;
ZAGREBNOV, VA .
JOURNAL OF STATISTICAL PHYSICS, 1985, 41 (1-2) :323-334
[2]   COMPUTER-SIMULATION OF A CLASSICAL FLUID WITH INTERNAL QUANTUM STATES [J].
BALLONE, P ;
DESMEDT, P ;
LEBOWITZ, JL ;
TALBOT, J ;
WAISMAN, E .
PHYSICAL REVIEW A, 1987, 35 (02) :942-944
[3]   PHASE TRANSITION IN A MODEL QUANTUM SYSTEM - QUANTUM CORRECTIONS TO LOCATION OF CRITICAL POINT [J].
BURKE, T ;
LEBOWITZ, JL ;
LIEB, E .
PHYSICAL REVIEW, 1966, 149 (01) :118-&
[4]  
CHAYES L, 1998, DISCONTINUITY MAGNET
[5]   SANOV PROPERTY, GENERALIZED I-PROJECTION AND A CONDITIONAL LIMIT-THEOREM [J].
CSISZAR, I .
ANNALS OF PROBABILITY, 1984, 12 (03) :768-793
[6]  
DEGENNES PG, 1974, PHYSICS LIQUID CRYST
[7]   STATIC AND DYNAMIC CORRELATIONS IN FLUIDS WITH INTERNAL QUANTUM STATES - COMPUTER-SIMULATIONS AND THEORY [J].
DESMEDT, P ;
NIELABA, P ;
LEBOWITZ, JL ;
TALBOT, J ;
DOOMS, L .
PHYSICAL REVIEW A, 1988, 38 (03) :1381-1394
[8]   VAN-DER-WAALS LIMIT FOR CLASSICAL SYSTEMS .1. A VARIATIONAL PRINCIPLE [J].
GATES, DJ ;
PENROSE, O .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1969, 15 (04) :255-&
[9]  
Georgii H.-O., 1988, DEGRUYTER STUDIES MA, V9
[10]   Phase transition in continuum Potts models [J].
Georgii, HO ;
Haggstrom, O .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 181 (02) :507-528