Two motifs in the translational repressor PHAS-I required for efficient phosphorylation by mammalian target of rapamycin and for recognition by raptor

被引:90
作者
Choi, KM
McMahon, LP
Lawrence, JC
机构
[1] Univ Virginia, Sch Med, Dept Pharmacol, Charlottesville, VA 22908 USA
[2] Univ Virginia, Sch Med, Dept Med, Charlottesville, VA 22908 USA
关键词
D O I
10.1074/jbc.M301142200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mammalian target of rapamycin ( mTOR) is the central element of a signaling pathway involved in the control of mRNA translation and cell growth. The actions of mTOR are mediated in part through the phosphorylation of the eukaryotic initiation factor 4E-binding protein, PHAS-I. In vitro mTOR phosphorylates PHAS-I in sites that control PHAS-I binding to eukaryotic initiation factor 4E; however, whether mTOR directly phosphorylates PHAS-I in cells has been a point of debate. The Arg-Ala-Ile-Pro (RAIP motif) and Phe-Glu-Met-Asp-Ile ( tor signaling motif) sequences found in the NH2- and COOH-terminal regions of PHAS-I, respectively, are required for the efficient phosphorylation of PHAS-I in cells. Here we show that mutations in either motif markedly decreased the phosphorylation of recombinant PHAS-I by mTOR in vitro. Wild-type PHAS-I, but none of the mutant proteins, was coimmunoprecipitated with hemagglutinin-tagged raptor, an mTOR-associated protein, after extracts of cells overexpressing raptor had been supplemented with recombinant PHAS-I proteins. Moreover, raptor overexpression enhanced the phosphorylation of wild-type PHAS-I by mTOR but not the phosphorylation of the mutant proteins. The results not only provide direct evidence that both the RAIP and tor signaling motifs are important for the phosphorylation by mTOR, possibly by allowing PHAS-I binding to raptor, but also support the view that mTOR phosphorylates PHAS-I in cells.
引用
收藏
页码:19667 / 19673
页数:7
相关论文
共 37 条
  • [1] Mammalian target of rapamycin: immunosuppressive drugs uncover a novel pathway of cytokine receptor signaling
    Abraham, RT
    [J]. CURRENT OPINION IN IMMUNOLOGY, 1998, 10 (03) : 330 - 336
  • [2] A MAMMALIAN PROTEIN TARGETED BY G1-ARRESTING RAPAMYCIN-RECEPTOR COMPLEX
    BROWN, EJ
    ALBERS, MW
    SHIN, TB
    ICHIKAWA, K
    KEITH, CT
    LANE, WS
    SCHREIBER, SL
    [J]. NATURE, 1994, 369 (6483) : 756 - 758
  • [3] The mammalian target of rapamycin phosphorylates sites having a (Ser/Thr)-Pro motif and is activated by antibodies to a region near its COOH terminus
    Brunn, GJ
    Fadden, P
    Haystead, TAJ
    Lawrence, JC
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (51) : 32547 - 32550
  • [4] Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin
    Brunn, GJ
    Hudson, CC
    Sekulic, A
    Williams, JM
    Hosoi, H
    Houghton, PJ
    Lawrence, JC
    Abraham, RT
    [J]. SCIENCE, 1997, 277 (5322) : 99 - 101
  • [5] Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002
    Brunn, GJ
    Williams, J
    Sabers, C
    Wiederrecht, G
    Lawrence, JC
    Abraham, RT
    [J]. EMBO JOURNAL, 1996, 15 (19) : 5256 - 5267
  • [6] RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1
    Burnett, PE
    Barrow, RK
    Cohen, NA
    Snyder, SH
    Sabatini, DM
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (04) : 1432 - 1437
  • [7] STRUCTURAL AND FUNCTIONAL-ANALYSIS OF PP70(S6K)
    CHEATHAM, L
    MONFAR, M
    CHOU, MM
    BLENIS, J
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (25) : 11696 - 11700
  • [8] Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases
    DiComo, CJ
    Arndt, KT
    [J]. GENES & DEVELOPMENT, 1996, 10 (15) : 1904 - 1916
  • [9] Fadden P, 1997, J BIOL CHEM, V272, P10240
  • [10] eIF4 initiation factors: Effectors of mRNA recruitment to ribosomes and regulators of translation
    Gingras, AC
    Raught, B
    Sonenberg, N
    [J]. ANNUAL REVIEW OF BIOCHEMISTRY, 1999, 68 : 913 - 963