A clustering algorithm for huge trees

被引:2
作者
Auber, D [1 ]
Delest, M [1 ]
机构
[1] Univ Bordeaux 1, LaBRI, F-33405 Talence, France
关键词
trees; statistics; information visualization;
D O I
10.1016/S0196-8858(02)00505-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new tree clustering algorithm based on combinatorial statistics on trees. Using well-known measures on trees giving the number of leaves of a subtree or the number of siblings of a node, we design a parameter that can be used to detect irregularities in a tree. We obtain a clustering approach for trees by implementing classical statistical tests on this parameter, thus providing well balanced drawings of trees offering better aspect ratios which can be useful when dealing with large, irregular hierarchical data. Our algorithm is linear in time and can thus be applied to large data structures. Moreover the larger the structure is the better the precision of the statistical tools. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:46 / 60
页数:15
相关论文
共 15 条
[1]  
[Anonymous], DISCRETE MATH THEORE
[2]  
AUBER D., 2001, LECT NOTES COMPUTER, V2265, P335
[3]  
AUBER D, TULIP SOFTWARE
[4]  
DMROTA M, 1994, J COMB THEORY A, V67, P169
[5]  
FLAJOLET P, 1993, 1888 INRIA
[6]  
FROHLICH M, 1995, LECT NOTES COMPUT SC, V894
[7]  
Herman I, 1999, LECT NOTES COMPUT SC, V1731, P392
[8]   Tree visualisation and navigation clues for information visualisation [J].
Herman, I ;
Delest, M ;
Melancon, G .
COMPUTER GRAPHICS FORUM, 1998, 17 (02) :153-165
[9]  
HUANG ML, 1998, 7 WORLD WID WEB C EL, P636
[10]  
Kendall M.G., 1966, ADV THEORY STAT