A transgenomic cytogenetic sorghum (Sorghum propinquum) bacterial artificial chromosome fluorescence in situ hybridization map of maize (Zea mays L.) pachytene chromosome 9, evidence for regions of genome hyperexpansion

被引:26
作者
Amarillo, F. Ina E. [1 ]
Bass, Hank W. [1 ]
机构
[1] Florida State Univ, Dept Biol Sci, Tallahassee, FL 32306 USA
关键词
D O I
10.1534/genetics.107.080846
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
A cytogenetic FISH map of maize pachytene-stage chromosome 9 was produced with 32 maize marker-selected sorghum BACs as probes. The genetically mapped markers used are distributed along the linkage maps at an average spacing of 5 cM. Each locus was mapped by means of multicolor direct FISH with a fluorescently labeled probe mix containing a whole-chromosome paint, a single sorghum BAC clone, and the centromeric sequence, CentC. A maize-chromosome-addition line of oat was used for bright unambiguous identification of the maize 9 fiber within pachytene chromosome spreads. The locations of the sorghum BAC-FISH signals were determined, and each new cytogenetic locus was assigned a centiMcClintock position on the short (9S) or long (9L) arm. Nearly all of the markers appeared in the same order on linkage and cytogenetic maps but at different relative positions on the two. The CentC FISH signal was localized between cdo17 (at 9L.03) and tda66 (at 9S.03). Several regions of genome hyperexpansion on maize chromosome 9 were found by comparative analysis of relative marker spacing in maize and sorghum. This transgenomic cytogenetic FISH map creates anchors between various maps of maize and sorghum and creates additional tools and information for understanding the structure and evolution of the maize genome.
引用
收藏
页码:1509 / 1526
页数:18
相关论文
共 114 条
[1]   Fluorescence in situ hybridization of knob-associated DNA elements analysis reveals multiple loci in one-knob and knobless maize lines [J].
Adawy, SSM ;
Stupar, RM ;
Jiang, JM .
JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY, 2004, 52 (08) :1113-1116
[2]   Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions [J].
Ananiev, EV ;
Phillips, RL ;
Rines, HW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (22) :13073-13078
[3]   Integrating genetic linkage maps with pachytene chromosome structure in maize [J].
Anderson, LK ;
Salameh, N ;
Bass, HW ;
Harper, LC ;
Cande, WZ ;
Weber, G ;
Stack, SM .
GENETICS, 2004, 166 (04) :1923-1933
[4]  
Anderson LK, 2003, GENETICS, V165, P849
[5]  
BENNETT MD, 1995, MAYDICA, V40, P199
[6]  
Bennetzen Jeffrey L., 2001, Plant Physiology (Rockville), V127, P1572, DOI 10.1104/pp.010817
[7]   Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses [J].
Bowers, JE ;
Arias, MA ;
Asher, R ;
Avise, JA ;
Ball, RT ;
Brewer, GA ;
Buss, RW ;
Chen, AH ;
Edwards, TM ;
Estill, JC ;
Exum, HE ;
Goff, VH ;
Herrick, KL ;
Steele, CLJ ;
Karunakaran, S ;
Lafayette, GK ;
Lemke, C ;
Marler, BS ;
Masters, SL ;
McMillan, JM ;
Nelson, LK ;
Newsome, GA ;
Nwakanma, CC ;
Odeh, RN ;
Phelps, CA ;
Rarick, EA ;
Rogers, CJ ;
Ryan, SP ;
Slaughter, KA ;
Soderlund, CA ;
Tang, HB ;
Wing, RA ;
Paterson, AH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (37) :13206-13211
[8]  
Bowers JE, 2003, GENETICS, V165, P367
[9]   Uneven chromosome contraction and expansion in the maize genome [J].
Bruggmann, Remy ;
Bharti, Arvind K. ;
Gundlach, Heidrun ;
Lai, Jinsheng ;
Young, Sarah ;
Pontaroli, Ana C. ;
Wei, Fusheng ;
Haberer, Georg ;
Fuks, Galina ;
Du, Chunguang ;
Raymond, Christina ;
Estep, Matt C. ;
Liu, Renyi ;
Bennetzen, Jeffrey L. ;
Chan, Agnes P. ;
Rabinowicz, Pablo D. ;
Quackenbush, John ;
Barbazuk, W. Brad ;
Wing, Rod A. ;
Birren, Bruce ;
Nusbaum, Chad ;
Rounsley, Steve ;
Mayer, Klaus F. X. ;
Messing, Joachim .
GENOME RESEARCH, 2006, 16 (10) :1241-1251
[10]   Molecular and functional diversity of maize [J].
Buckler, ES ;
Gaut, BS ;
McMullen, MD .
CURRENT OPINION IN PLANT BIOLOGY, 2006, 9 (02) :172-176