Structure of the Hybrid-2 type intramolecular human telomeric G-quadruplex in K+ solution:: insights into structure polymorphism of the human telomeric sequence

被引:455
作者
Dai, Jixun
Carver, Megan
Punchihewa, Chandanamali
Jones, Roger A.
Yang, Danzhou
机构
[1] Univ Arizona, Coll Pharm, Tucson, AZ 85721 USA
[2] Rutgers State Univ, Dept Chem & Chem Biol, Piscataway, NJ 08854 USA
[3] Univ Arizona, Arizona Canc Ctr, Tucson, AZ 85721 USA
[4] Univ Arizona, BIO5 Inst, Tucson, AZ 85721 USA
关键词
D O I
10.1093/nar/gkm522
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Formation of the G-quadruplex in the human telomeric sequence can inhibit the activity of telomerase, thus the intramolecular telomeric G-quadruplexes have been considered as an attractive anticancer target. Information of intramolecular telomeric G-quadruplex structures formed under physiological conditions is important for structure-based drug design. Here, we report the first structure of the major intramolecular G-quadruplex formed in a native, non-modified human telomeric sequence in K+ solution. This is a hybrid-type mixed parallel/antiparallel-G-stranded G-quadruplex, one end of which is covered by a novel T: A: T triple capping structure. This structure (Hybrid-2) and the previously reported Hybrid-1 structure differ in their loop arrangements, strand orientations and capping structures. The distinct capping structures appear to be crucial for the favored formation of the specific hybrid-type intramolecular telomeric G-quadruplexes, and may provide specific binding sites for drug targeting. Our study also shows that while the hybrid-type G-quadruplexes appear to be the major conformations in K+ solution, human telomeric sequences are always in equilibrium between Hybrid-1 and Hybrid-2 structures, which is largely determined by the 3'-flanking sequence. Furthermore, both hybrid-type G-quadruplexes suggest a straightforward means for multimer formation with effective packing in the human telomeric sequence and provide important implications for drug targeting of G-quadruplexes in human telomeres.
引用
收藏
页码:4927 / 4940
页数:14
相关论文
共 57 条
[1]   HUMAN TELOMERES CONTAIN AT LEAST 3 TYPES OF G-RICH REPEAT DISTRIBUTED NON-RANDOMLY [J].
ALLSHIRE, RC ;
DEMPSTER, M ;
HASTIE, ND .
NUCLEIC ACIDS RESEARCH, 1989, 17 (12) :4611-4627
[2]   Solution structure of the biologically relevant g-quadruplex element in the human c-MYC promoter. implications for g-quadruplex stabilization [J].
Ambrus, A ;
Chen, D ;
Dai, JX ;
Jones, RA ;
Yang, DZ .
BIOCHEMISTRY, 2005, 44 (06) :2048-2058
[3]   Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution [J].
Ambrus, Attila ;
Chen, Ding ;
Dai, Jixun ;
Bialis, Tiffanie ;
Jones, Roger A. ;
Yang, Danzhou .
NUCLEIC ACIDS RESEARCH, 2006, 34 (09) :2723-2735
[4]  
BALAGURUMOORTHY P, 1994, J BIOL CHEM, V269, P21858
[5]   TANDEMLY REPEATED SEQUENCE AT TERMINI OF EXTRACHROMOSOMAL RIBOSOMAL-RNA GENES IN TETRAHYMENA [J].
BLACKBURN, EH ;
GALL, JG .
JOURNAL OF MOLECULAR BIOLOGY, 1978, 120 (01) :33-53
[6]   Extension of life-span by introduction of telomerase into normal human cells [J].
Bodnar, AG ;
Ouellette, M ;
Frolkis, M ;
Holt, SE ;
Chiu, CP ;
Morin, GB ;
Harley, CB ;
Shay, JW ;
Lichtsteiner, S ;
Wright, WE .
SCIENCE, 1998, 279 (5349) :349-352
[7]  
Brunger AT., 1993, X PLOR VERSION 3 1 S
[8]   Structure of the intramolecular human telomeric G-quadruplex in potassium solution: a novel adenine triple formation [J].
Dai, Jixun ;
Punchihewa, Chandanamali ;
Ambrus, Attila ;
Chen, Ding ;
Jones, Roger A. ;
Yang, Danzhou .
NUCLEIC ACIDS RESEARCH, 2007, 35 (07) :2440-2450
[9]   NMR solution structure of the major G-quadruplex structure formed in the human BCL2 promoter region [J].
Dai, Jixun ;
Chen, Ding ;
Jones, Roger A. ;
Hurley, Laurence H. ;
Yang, Danzhou .
NUCLEIC ACIDS RESEARCH, 2006, 34 (18) :5133-5144
[10]   An intramolecular G-quadruplex structure with mixed parallel/antiparallel G-strands formed in the human BCL-2 promoter region in solution [J].
Dai, JX ;
Dexheimer, TS ;
Chen, D ;
Carver, M ;
Ambrus, A ;
Jones, RA ;
Yang, DZ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (04) :1096-1098