Kepler's conjecture confirmed

被引:75
作者
Sloane, NJA [1 ]
机构
[1] AT&T Shannon Lab, Florham Park, NJ 07932 USA
关键词
D O I
10.1038/26609
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
One of the oldest unsolved problems in mathematics appears to have been settled. On 9 August, Thomas C. Hales announced that he had proved Kepler's assertion of 1611 that no packing of spheres can be denser than a face-centred-cubic lattice.
引用
收藏
页码:435 / 436
页数:2
相关论文
共 10 条
[1]  
Barlow W., 1883, Nature, V29, P186, DOI [10.1038/029186a0, DOI 10.1038/029186A0]
[2]  
BEZDEK A, 1991, V KLEE FESTSCHRIFT, P71
[3]  
Conway J. H., 1993, SPHERE PACKINGS LATT
[4]   WHAT ARE ALL THE BEST SPHERE PACKINGS IN LOW DIMENSIONS [J].
CONWAY, JH ;
SLOANE, NJA .
DISCRETE & COMPUTATIONAL GEOMETRY, 1995, 13 (3-4) :383-403
[5]  
Fuller R.B., 1975, Synergetics
[6]   Sphere packings .1. [J].
Hales, TC .
DISCRETE & COMPUTATIONAL GEOMETRY, 1997, 17 (01) :1-51
[7]  
HSIANG WY, 1993, INT J MATH, V93, P739
[8]  
ROGERS C. A., 1958, Proc. London Math. Soc., Vs3-8, P609, DOI [10.1112/plms/s3-8.4.609, DOI 10.1112/PLMS/S3-8.4.609]
[9]   COMMUNICATION IN THE PRESENCE OF NOISE [J].
SHANNON, CE .
PROCEEDINGS OF THE INSTITUTE OF RADIO ENGINEERS, 1949, 37 (01) :10-21
[10]  
TOTH GF, 1995, MATH REV, V95