Comparison of correlation analysis techniques for irregularly sampled time series

被引:191
作者
Rehfeld, K. [1 ,2 ]
Marwan, N. [1 ]
Heitzig, J. [1 ]
Kurths, J. [1 ,2 ,3 ]
机构
[1] Potsdam Inst Climate Impact Res, D-14412 Potsdam, Germany
[2] Humboldt Univ, Dept Phys, D-12489 Berlin, Germany
[3] Univ Aberdeen, Inst Complex Syst & Math Biol, Aberdeen AB24 3UE, Scotland
关键词
HOLOCENE ASIAN MONSOON; SPECTRAL-ANALYSIS; VARIABILITY; POWER;
D O I
10.5194/npg-18-389-2011
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Geoscientific measurements often provide time series with irregular time sampling, requiring either data reconstruction (interpolation) or sophisticated methods to handle irregular sampling. We compare the linear interpolation technique and different approaches for analyzing the correlation functions and persistence of irregularly sampled time series, as Lomb-Scargle Fourier transformation and kernel-based methods. In a thorough benchmark test we investigate the performance of these techniques. All methods have comparable root mean square errors (RMSEs) for low skewness of the inter-observation time distribution. For high skewness, very irregular data, interpolation bias and RMSE increase strongly. We find a 40% lower RMSE for the lag-1 autocorrelation function (ACF) for the Gaussian kernel method vs. the linear interpolation scheme, in the analysis of highly irregular time series. For the cross correlation function (CCF) the RMSE is then lower by 60%. The application of the Lomb-Scargle technique gave results comparable to the kernel methods for the univariate, but poorer results in the bivariate case. Especially the high-frequency components of the signal, where classical methods show a strong bias in ACF and CCF magnitude, are preserved when using the kernel methods. We illustrate the performances of interpolation vs. Gaussian kernel method by applying both to paleo-data from four locations, reflecting late Holocene Asian monsoon variability as derived from speleothem delta O-18 measurements. Cross correlation results are similar for both methods, which we attribute to the long time scales of the common variability. The persistence time (memory) is strongly overestimated when using the standard, interpolation-based, approach. Hence, the Gaussian kernel is a reliable and more robust estimator with significant advantages compared to other techniques and suitable for large scale application to paleo-data.
引用
收藏
页码:389 / 404
页数:16
相关论文
共 35 条
[1]   Spectral analysis of nonuniformly sampled data - a review [J].
Babu, Prabhu ;
Stoica, Petre .
DIGITAL SIGNAL PROCESSING, 2010, 20 (02) :359-378
[2]  
Benedict L.H, 1998, P 9 INT S APPL LAS T
[3]   Estimation of turbulent velocity spectra from laser Doppler data [J].
Benedict, LH ;
Nobach, H ;
Tropea, C .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2000, 11 (08) :1089-1104
[4]   Persistent multidecadal power of the Indian Summer Monsoon [J].
Berkelhammer, Max ;
Sinha, Ashish ;
Mudelsee, Manfred ;
Cheng, Hai ;
Edwards, R. Lawrence ;
Cannariato, Kevin .
EARTH AND PLANETARY SCIENCE LETTERS, 2010, 290 (1-2) :166-172
[5]   Nonparametric spatial covariance functions: Estimation and testing [J].
Bjornstad, ON ;
Falck, W .
ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2001, 8 (01) :53-70
[6]   TIMING SIGNATURES OF THE INTERNAL-SHOCK MODEL FOR BLAZARS [J].
Boettcher, M. ;
Dermer, C. D. .
ASTROPHYSICAL JOURNAL, 2010, 711 (01) :445-460
[7]   Autoregressive spectral estimation by application of the Burg algorithm to irregularly sampled data [J].
Bos, R ;
de Waele, S ;
Broersen, PMT .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2002, 51 (06) :1289-1294
[8]  
Broersen P.M. T., 2000, 10 INT S APPL LASER
[9]   Five Separate Bias Contributions in Time Series Models for Equidistantly Resampled Irregular Data [J].
Broersen, Piet A. T. .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2009, 58 (05) :1370-1379
[10]  
Chatfield C, 2004, TEXTS STAT SCI