K+ channels at the axon initial segment dampen near-threshold excitability of neocortical fast-spiking GABAergic interneurons

被引:211
作者
Goldberg, Ethan M. [1 ,2 ,3 ]
Clark, Brian D. [1 ,2 ,3 ]
Zagha, Edward [1 ,2 ,3 ]
Nahmani, Mark [5 ]
Erisir, Alev [5 ]
Rudy, Bernardo [1 ,3 ,4 ]
机构
[1] NYU, Sch Med, Smilow Neurosci Program, New York, NY 10016 USA
[2] NYU, Sch Med, Med Sci Training Program, New York, NY 10016 USA
[3] NYU, Sch Med, Dept Physiol & Neurosci, New York, NY 10016 USA
[4] NYU, Sch Med, Dept Biochem, New York, NY 10016 USA
[5] Univ Virginia, Dept Psychol, Charlottesville, VA 22904 USA
关键词
D O I
10.1016/j.neuron.2008.03.003
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Fast-spiking cells (FS cells) are a prominent subtype of neocortical GABAergic interneurons with important functional roles. Multiple FS cell properties are coordinated for rapid response. Here, we describe an FS cell feature that serves to gate the powerful inhibition produced by FS cell activity. We show that FS cells in layer 2/3 barrel cortex possess a dampening mechanism mediated by Kv1.1-containing potassium channels localized to the axon initial segment. These channels powerfully regulate action potential threshold and allow FS cells to respond preferentially to large inputs that are fast enough to "outrun" Kv1 activation. In addition, Kv1.1 channel blockade converts the delay-type discharge pattern of FS cells to one of continuous fast spiking without influencing the high-frequency firing that defines FS cells. Thus, Kv1 channels provide a key counterbalance to the established rapid-response characteristics of FS cells, regulating excitability through a unique combination of electrophysiological properties and discrete subcellular localization.
引用
收藏
页码:387 / 400
页数:14
相关论文
共 54 条
[1]   Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo [J].
Azouz, R ;
Gray, CM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (14) :8110-8115
[2]   Two dynamically distinct inhibitory networks in layer 4 of the neocortex [J].
Beierlein, M ;
Gibson, JR ;
Connors, BW .
JOURNAL OF NEUROPHYSIOLOGY, 2003, 90 (05) :2987-3000
[3]  
Bruno RM, 2002, J NEUROSCI, V22, P10966
[4]  
Chow A, 1999, J NEUROSCI, V19, P9332
[5]   Molecular diversity of K+ channels [J].
Coetzee, WA ;
Amarillo, Y ;
Chiu, J ;
Chow, A ;
Lau, D ;
McCormack, T ;
Moreno, H ;
Nadal, MS ;
Ozaita, A ;
Pountney, D ;
Saganich, M ;
Vega-Saenz de Miera, E ;
Rudy, B .
MOLECULAR AND FUNCTIONAL DIVERSITY OF ION CHANNELS AND RECEPTORS, 1999, 868 :233-285
[6]   PREDICTION OF REPETITIVE FIRING BEHAVIOUR FROM VOLTAGE CLAMP DATA ON AN ISOLATED NEURONE SOMA [J].
CONNOR, JA ;
STEVENS, CF .
JOURNAL OF PHYSIOLOGY-LONDON, 1971, 213 (01) :31-&
[7]   INTRINSIC FIRING PATTERNS OF DIVERSE NEOCORTICAL NEURONS [J].
CONNORS, BW ;
GUTNICK, MJ .
TRENDS IN NEUROSCIENCES, 1990, 13 (03) :99-104
[8]   Electrophysiological classes of neocortical neurons [J].
Contreras, D .
NEURAL NETWORKS, 2004, 17 (5-6) :633-646
[9]   Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex [J].
Cruikshank, Scott J. ;
Lewis, Timothy J. ;
Connors, Barry W. .
NATURE NEUROSCIENCE, 2007, 10 (04) :462-468
[10]   Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons [J].
Dantzker, JL ;
Callaway, EM .
NATURE NEUROSCIENCE, 2000, 3 (07) :701-707