Hamiltonian formalism and the Garrett-Munk spectrum of internal waves in the ocean

被引:67
作者
Lvov, YV [1 ]
Tabak, EG
机构
[1] Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
Anisotropy - Energy dissipation - Equations of motion - Fourier transforms - Hamiltonians - Nonlinear equations - Spectrum analysis - Thermal stratification - Turbulence;
D O I
10.1103/PhysRevLett.87.168501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Wave turbulence formalism for long internal waves in a stratified fluid is developed, based on a natural Hamiltonian description. A kinetic equation appropriate for the description of spectral energy transfer is derived, and its anisotropic self-similar stationary solution corresponding to a direct cascade of energy toward the short scales is found. This solution is very close to the high wave-number limit of the Garrett-Munk spectrum of long internal waves in the ocean. In fact, a small modification of the Garrett-Munk formalism includes a spectrum consistent with the one predicted by wave turbulence.
引用
收藏
页码:1 / 168501
页数:4
相关论文
共 11 条
[1]   INTERNAL WAVES IN THE OCEAN [J].
GARRETT, C ;
MUNK, W .
ANNUAL REVIEW OF FLUID MECHANICS, 1979, 11 :339-369
[2]  
Garrett C., 1972, Geophysical Fluid Dynamics, V3, P225, DOI 10.1080/03091927208236082
[3]   SPACE-TIME SCALES OF INTERNAL WAVES - PROGRESS REPORT [J].
GARRETT, C ;
MUNK, W .
JOURNAL OF GEOPHYSICAL RESEARCH, 1975, 80 (03) :291-297
[4]  
Gill AE., 1982, ATMOSPHERE OCEAN DYN, P317, DOI 10.1016/S0074-6142(08)60034-0
[5]   ON THE NON-LINEAR ENERGY TRANSFER IN A GRAVITY-WAVE SPECTRUM .1. GENERAL THEORY [J].
HASSELMANN, K .
JOURNAL OF FLUID MECHANICS, 1962, 12 (04) :481-500
[6]  
HASSELMANN K, 1962, J FLUID MECH 2, V15, P324
[7]  
Kuznetsov E. A., 1972, Soviet Physics - JETP, V35, P310
[8]   NONLINEAR-INTERACTIONS AMONG INTERNAL GRAVITY-WAVES [J].
MULLER, P ;
HOLLOWAY, G ;
HENYEY, F ;
POMPHREY, N .
REVIEWS OF GEOPHYSICS, 1986, 24 (03) :493-536
[9]  
Zakharov V.E., 2012, KOLMOGOROV SPECTRA T
[10]  
Zakharov V. E., 1968, J APPL MECH TECH PH+, V9, P190, DOI [10.1007/BF00913182, DOI 10.1007/BF00913182]