Learning associations between places and visual cues without learning to navigate: Neither fornix nor entorhinal cortex is required

被引:15
作者
Gaffan, EA [1 ]
Bannerman, DM
Healey, AN
机构
[1] Univ Reading, Sch Psychol, Reading RG6 6AL, Berks, England
[2] Univ Oxford, Dept Expt Psychol, Oxford OX1 2JD, England
关键词
retrohippocampal region; subiculum; allocentric; egocentric; incidental learning; rats;
D O I
10.1002/hipo.10066
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Rats with fornix transection, or with cytotoxic retrohippocampal lesions that removed entorhinal cortex plus ventral subiculum, performed a task that permits incidental learning about either allocentric (Allo) or egocentric (Ego) spatial cues without the need to navigate by them. Rats learned eight visual discriminations among computer-displayed scenes in a Y-maze, using the constant-negative paradigm. Every discrimination problem included two familiar scenes (constants) and many less familiar scenes (variables). On each trial, the rats chose between a constant and a variable scene, with the choice of the variable rewarded. In six problems, the two constant scenes had correlated spatial properties, either Alto (each constant appeared always in the same maze arm) or Ego (each constant always appeared in a fixed direction from the start arm) or both (Allo + Ego). In two No-Cue (NC) problems, the two constants appeared in randomly determined arms and directions. Intact rats learn problems with an added Allo or Ego cue faster than NC problems; this facilitation provides indirect evidence that they learn the associations between scenes and spatial cues, even though that is not required for problem solution. Fornix and retrohippocampal-lesioned groups learned NC problems at a similar rate to sham-operated controls and showed as much facilitation of learning by added spatial cues as did the controls; therefore, both lesion groups must have encoded the spatial cues and have incidentally learned their associations with particular constant scenes. Similar facilitation was seen in subgroups that had short or long prior experience with the apparatus and task. Therefore, neither major hippocampal input-output system is crucial for learning about allocentric or egocentric cues in this paradigm, which does not require rats to control their choices or navigation directly by spatial cues.
引用
收藏
页码:445 / 460
页数:16
相关论文
共 70 条
[1]   The effects of selective lesions within the anterior thalamic nuclei on spatial memory in the rat [J].
Aggleton, JP ;
Hunt, PR ;
Nagle, S ;
Neave, N .
BEHAVIOURAL BRAIN RESEARCH, 1996, 81 (1-2) :189-198
[2]   REMOVAL OF THE HIPPOCAMPUS AND TRANSECTION OF THE FORNIX PRODUCE COMPARABLE DEFICITS ON DELAYED NONMATCHING TO POSITION BY RATS [J].
AGGLETON, JP ;
KEITH, AB ;
RAWLINS, JNP ;
HUNT, PR ;
SAHGAL, A .
BEHAVIOURAL BRAIN RESEARCH, 1992, 52 (01) :61-71
[3]   Hippocampectomized rats are capable of homing by path integration [J].
Alyan, S ;
McNaughton, BL .
BEHAVIORAL NEUROSCIENCE, 1999, 113 (01) :19-31
[4]  
[Anonymous], RAT BRAIN STEREOTAXI
[5]  
Bannerman DM, 2001, EXP BRAIN RES, V141, P281
[6]  
Bannerman DM, 2001, EXP BRAIN RES, V141, P304
[7]   Perirhinal cortex ablation impairs configural learning and paired-associate learning equally [J].
Buckley, MJ ;
Gaffan, D .
NEUROPSYCHOLOGIA, 1998, 36 (06) :535-546
[8]   Distinct patterns of behavioural impairments resulting from fornix transection or neurotoxic lesions of the perirhinal and postrhinal cortices in the rat [J].
Bussey, TJ ;
Duck, J ;
Muir, JL ;
Aggleton, JP .
BEHAVIOURAL BRAIN RESEARCH, 2000, 111 (1-2) :187-202
[9]   Functionally dissociating aspects of event memory: The effects of combined perirhinal and postrhinal cortex lesions on object and place memory in the rat [J].
Bussey, TJ ;
Muir, JL ;
Aggleton, JP .
JOURNAL OF NEUROSCIENCE, 1999, 19 (01) :495-502
[10]   Fimbria-fornix vs selective hippocampal lesions in rats: Effects on locomotor activity and spatial learning and memory [J].
Cassel, JC ;
Cassel, S ;
Galani, R ;
Kelche, C ;
Will, B ;
Jarrard, L .
NEUROBIOLOGY OF LEARNING AND MEMORY, 1998, 69 (01) :22-45