Time-dependent perturbation theory for the construction of invariants of Hamiltonian systems

被引:18
作者
Lewis, HR [1 ]
Bates, JW [1 ]
Finn, JM [1 ]
机构
[1] LOS ALAMOS NATL LAB,LOS ALAMOS,NM 87545
关键词
perturbation theory; Hamiltonian systems; invariants; Mathieu equation;
D O I
10.1016/0375-9601(96)00221-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A time-dependent perturbation theory is presented for iteratively constructing invariants for a Hamiltonian consisting of a time-independent zeroth-order term plus a time-dependent perturbation. The procedure involves only a single canonical transformation and small divisors can be avoided. The Mathieu equation is treated as an example.
引用
收藏
页码:160 / 166
页数:7
相关论文
共 12 条
[1]  
ABRAMOWITZ M, HDB MATH FUNCTIONS, pCH20
[2]  
ANTON H, 1984, CALCULUS ANAL GEOMET
[3]  
Bates J.D., UNPUB
[4]  
BATES JW, 1995, UNPUB P SHERW THEOR
[5]   VLASOV-FLUID MODEL FOR STUDYING GROSS STABILITY OF HIGH-BETA PLASMAS [J].
FREIDBERG, JP .
PHYSICS OF FLUIDS, 1972, 15 (06) :1102-+
[6]  
GOLDSTEIN H, 1980, CLASSICALMECH
[7]   MOTION OF A TIME-DEPENDENT HARMONIC OSCILLATOR AND OF A CHARGED PARTICLE IN A CLASS OF TIME-DEPENDENT AXIALLY SYMMETRIC ELECTROMAGNETIC FIELDS [J].
LEWIS, HR .
PHYSICAL REVIEW, 1968, 172 (05) :1313-&
[8]   AN EXACT QUANTUM THEORY OF TIME-DEPENDENT HARMONIC OSCILLATOR AND OF A CHARGED PARTICLE IN A TIME-DEPENDENT ELECTROMAGNETIC FIELD [J].
LEWIS, HR ;
RIESENFELD, WB .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (08) :1458-+
[10]  
LEWIS HR, UNPUB