The transfer of reductive energy and pace of proteome turnover: A theory of integrated catabolic control

被引:4
作者
Lockwood, TD [1 ]
机构
[1] Wright State Univ, Sch Med, Dept Pharmacol & Toxicol, Dayton, OH 45429 USA
关键词
D O I
10.1089/ars.2005.7.982
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Hundreds of cell proteins undergo reversible transitions among redox states. Coordinate control and common functions served by redox-modified proteins are unknown. The suspect "redox code" integrating metabolome, proteome, and genome remains undefined. Protein redox control involves coupling of the population redox partition to transfer of reductive energy from source to sink. Lessons in metabolic programs under redox coordination might be found in nutritional desperation where reductive transfer from fuel fails to feed pathways to protein reduction. Upon nutritional interruption, proteolysis initially increases. However, catabolism secondarily declines in later starvation so as to postpone loss of the minimal proteome under synthetic failure and delay death. Integrated proteome turnover is paced by reductive transfer coupled to redox states of proteins serving diverse functions. Some continuing proteolysis is redox-independent. Cathepsin B is a model, redox-responsive, catabolic machine among proteins involved in turnover. The CysHis pair is simultaneously a redox-responsive site, an inhibitory metal-binding site, and a peptidolytic reaction mechanism. Pro-region cleavage generates permissive reaction conditions, but not necessarily the maximal peptidolytic rate. Mature cathepsin B can be inactivated by partition into multiple oxidation states. Cathepsin B can be reductively activated by glutathione or disulfhydryl reductases, and redox-buffered by glutathione homodisulfide/glutathione. Topics in protease regulation include: (a) the rate of total cell transfer of nutrient reductive energy from NADPH source potential to reductive pathways, (b) the distribution of reductive energy routed through parallel interactive pathways to protease, (c) the rate of transfer from protease through pathways to oxygen (reactive oxygen species) acceptor at sink potential, and (d) the linkage of protease state partition to relative rates of reductions and oxidations. Cell iron, sulfur, and oxygen redox are inseparable. The interaction of the CysHis site with iron provides a sensor, integrator, and effector switch coupling cathepsin B to metal-sulfur-oxygen redox. Artificial metal-redox-proton switching is a new concept in protein engineering; however, nature has already applied "nanotechnology" to protein redox control.
引用
收藏
页码:982 / 998
页数:17
相关论文
共 119 条
[1]   Characterization of a novel hemoglobin-glutathione adduct that is elevated in diabetic patients [J].
Al-Abed, Y ;
VanPatten, S ;
Li, HW ;
Lawson, JA ;
FitzGerald, GA ;
Manogue, KR ;
Bucala, R .
MOLECULAR MEDICINE, 2001, 7 (09) :619-623
[2]   Regulation of the processing of glucose-6-phosphate dehydrogenase mRNA by nutritional status [J].
Amir-Ahmady, B ;
Salati, LM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (13) :10514-10523
[3]   DEVELOPMENT OF NADPH-PRODUCING PATHWAYS IN RAT-HEART [J].
ANDRES, A ;
SATRUSTEGUI, J ;
MACHADO, A .
BIOCHEMICAL JOURNAL, 1980, 186 (03) :799-803
[4]   Physiological functions of thioredoxin and thioredoxin reductase [J].
Arnér, ESJ ;
Holmgren, A .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2000, 267 (20) :6102-6109
[5]   Enzymatic reduction of disulfide bonds in lysosomes: Characterization of a Gamma-interferon-inducible lysosomal thiol reductase (GILT) [J].
Arunachalam, B ;
Phan, UT ;
Geuze, HJ ;
Cresswell, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (02) :745-750
[6]   Inhibition of cysteine protease activity by NO-donors [J].
Ascenzi, P ;
Salvati, L ;
Bolognesi, M ;
Colasanti, M ;
Polticelli, F ;
Venturini, G .
CURRENT PROTEIN & PEPTIDE SCIENCE, 2001, 2 (02) :137-153
[7]   Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria [J].
Balmer, Y ;
Vensel, WH ;
Tanaka, CK ;
Hurkman, WJ ;
Gelhaye, E ;
Rouhier, N ;
Jacquot, JP ;
Manieri, W ;
Schüurmann, P ;
Droux, M ;
Buchanan, BB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (08) :2642-2647
[8]   Proteomics gives insight into the regulatory function of chloroplast thioredoxins [J].
Balmer, Y ;
Koller, A ;
del Val, G ;
Manieri, W ;
Schürmann, P ;
Buchanan, BB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (01) :370-375
[9]   A major fraction of endoplasmic reticulum-located glutathione is present as mixed disulfides with protein [J].
Bass, R ;
Ruddock, LW ;
Klappa, P ;
Freedman, RB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (07) :5257-5262
[10]  
Baty JW, 2002, PROTEOMICS, V2, P1261, DOI 10.1002/1615-9861(200209)2:9<1261::AID-PROT1261>3.0.CO