Processing of telomeric DNA ends requires the passage of a replication fork

被引:75
作者
Dionne, I [1 ]
Wellinger, RJ [1 ]
机构
[1] Univ Sherbrooke, Fac Med, Dept Microbiol & Infectiol, Sherbrooke, PQ J1H 5N4, Canada
基金
英国医学研究理事会;
关键词
D O I
10.1093/nar/26.23.5365
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
During telomere replication in yeast, chromosome ends acquire a long single-stranded extension of the strand making the 3' end. Previous work showed that these 3' tails are generated late in S-phase, when conventional replication is virtually complete. In addition, the extensions were also observed in cells that lacked telomerase. Therefore, a model was proposed that predicted an activity that recessed the 5' ends at yeast telomeres after conventional replication was complete. Here, we demonstrate that this processing activity is dependent on the passage of a replication fork through yeast telomeres. A non-replicating linear plasmid with telomeres at each end does not acquire single-stranded extensions, while an identical construct containing an origin of replication does. Thus, the processing activity could be associated with the enzymes at the replication fork itself, or the passage of the fork through the telomeric sequences allows a transient access for the activity to the telomeres. We therefore propose that there is a mechanistic link between the conventional replication machinery and telomere maintenance.
引用
收藏
页码:5365 / 5371
页数:7
相关论文
共 64 条
[1]   OVERCOMING TELOMERIC SILENCING - A TRANSACTIVATOR COMPETES TO ESTABLISH GENE-EXPRESSION IN A CELL CYCLE-DEPENDENT WAY [J].
APARICIO, OM ;
GOTTSCHLING, DE .
GENES & DEVELOPMENT, 1994, 8 (10) :1133-1146
[2]   Telomeres and double-strand breaks: trying to make ends meet [J].
Bertuch, A ;
Lundblad, V .
TRENDS IN CELL BIOLOGY, 1998, 8 (09) :339-342
[3]   A POSITIVE SELECTION FOR MUTANTS LACKING OROTIDINE-5'-PHOSPHATE DECARBOXYLASE ACTIVITY IN YEAST - 5-FLUORO-OROTIC ACID RESISTANCE [J].
BOEKE, JD ;
LACROUTE, F ;
FINK, GR .
MOLECULAR & GENERAL GENETICS, 1984, 197 (02) :345-346
[4]   Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing [J].
Boulton, SJ ;
Jackson, SP .
EMBO JOURNAL, 1998, 17 (06) :1819-1828
[5]   FINE-STRUCTURE ANALYSIS OF THE DNA-SEQUENCE REQUIREMENTS FOR AUTONOMOUS REPLICATION OF SACCHAROMYCES-CEREVISIAE PLASMIDS [J].
BOUTON, AH ;
SMITH, MM .
MOLECULAR AND CELLULAR BIOLOGY, 1986, 6 (07) :2354-2363
[6]   THE LOCALIZATION OF REPLICATION ORIGINS ON ARS PLASMIDS IN SACCHAROMYCES-CEREVISIAE [J].
BREWER, BJ ;
FANGMAN, WL .
CELL, 1987, 51 (03) :463-471
[7]   CDC17 - AN ESSENTIAL GENE THAT PREVENTS TELOMERE ELONGATION IN YEAST [J].
CARSON, MJ ;
HARTWELL, L .
CELL, 1985, 42 (01) :249-257
[8]   A FAMILY OF SACCHAROMYCES-CEREVISIAE REPETITIVE AUTONOMOUSLY REPLICATING SEQUENCES THAT HAVE VERY SIMILAR GENOMIC ENVIRONMENTS [J].
CHAN, CSM ;
TYE, BK .
JOURNAL OF MOLECULAR BIOLOGY, 1983, 168 (03) :505-523
[9]   RAP1 PROTEIN INTERACTS WITH YEAST TELOMERES INVIVO - OVERPRODUCTION ALTERS TELOMERE STRUCTURE AND DECREASES CHROMOSOME STABILITY [J].
CONRAD, MN ;
WRIGHT, JH ;
WOLF, AJ ;
ZAKIAN, VA .
CELL, 1990, 63 (04) :739-750
[10]   Cell cycle-regulated generation of single-stranded G-rich DNA in the absence of telomerase [J].
Dionne, I ;
Wellinger, RJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (24) :13902-13907