Reconstructing noisy dynamical systems by triangulations

被引:13
作者
Allie, S [1 ]
Mees, A [1 ]
Judd, K [1 ]
Watson, D [1 ]
机构
[1] UNIV CALIF SAN DIEGO,INST NONLINEAR SCI,SAN DIEGO,CA 92103
来源
PHYSICAL REVIEW E | 1997年 / 55卷 / 01期
关键词
D O I
10.1103/PhysRevE.55.87
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We show how to construct triangulations of noisy data from dynamical systems. We model the dynamics using piecewise linear or C-1 models defined over the triangulation. The number and positions of vertices of the triangulation are selected by the minimum description length criterion. We test the method on two artificial data sets and on experimental data from a chaotic electronic circuit. The models reproduce the qualitative aspects of the data as well as quantitative aspects such as correlation dimension and periodic points.
引用
收藏
页码:87 / 93
页数:7
相关论文
共 23 条
[1]   THE ANALYSIS OF OBSERVED CHAOTIC DATA IN PHYSICAL SYSTEMS [J].
ABARBANEL, HDI ;
BROWN, R ;
SIDOROWICH, JJ ;
TSIMRING, LS .
REVIEWS OF MODERN PHYSICS, 1993, 65 (04) :1331-1392
[2]  
ABARBANEL HDI, UNPUB
[3]  
[Anonymous], 1981, LECT NOTES MATH
[4]  
Broomhead D. S., 1988, Complex Systems, V2, P321
[5]   NONLINEAR PREDICTION OF CHAOTIC TIME-SERIES [J].
CASDAGLI, M .
PHYSICA D, 1989, 35 (03) :335-356
[6]   MULTIVARIATE CLASSIFICATION THROUGH ADAPTIVE DELAUNAY-BASED C-0 SPLINE APPROXIMATION [J].
CUBANSKI, D ;
CYGANSKI, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1995, 17 (04) :403-417
[7]   RECURRENCE PLOTS OF DYNAMIC-SYSTEMS [J].
ECKMANN, JP ;
KAMPHORST, SO ;
RUELLE, D .
EUROPHYSICS LETTERS, 1987, 4 (09) :973-977
[8]  
EFRON B, 1982, SOC IND APPLIED MATH, V38
[9]   PREDICTING CHAOTIC TIME-SERIES [J].
FARMER, JD ;
SIDOROWICH, JJ .
PHYSICAL REVIEW LETTERS, 1987, 59 (08) :845-848
[10]   COMPUTING DIRICHLET TESSELLATIONS IN PLANE [J].
GREEN, PJ ;
SIBSON, R .
COMPUTER JOURNAL, 1978, 21 (02) :168-173