On the second eigenvalue of the Laplace operator penalized by curvature

被引:9
作者
Harrell, EM [1 ]
机构
[1] GEORGIA INST TECHNOL,SCH MATH,ATLANTA,GA 30332
基金
美国国家科学基金会;
关键词
Schrodinger operator; spectral geometry; sphere;
D O I
10.1016/S0926-2245(96)00033-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the operator -del(2) - q(kappa), where -del(2) is the (positive) Laplace-Beltrami operator on a closed manifold of the topological type of the two-sphere S-2 and q is a symmetric non-negative quadratic form in the principal curvatures. Generalizing a well-known theorem of J. Hersch for the Laplace-Beltrami operator alone, it is shown in this note that the second eigenvalue lambda(1) is uniquely maximized, among manifolds of fixed area, by the true sphere.
引用
收藏
页码:397 / 400
页数:4
相关论文
共 15 条
[1]  
ALIKAKOS N, CONVERGENCE CAHN HIL
[2]  
Alikakos N.D., UNPUB
[3]  
ALIKAKOS ND, IN PRESS COMMUN PDE
[4]  
[Anonymous], ANAL OPERATORS METHO
[5]  
[Anonymous], ACTA METALL
[6]   CHARACTERIZATION OF 2-SPHERE BY EIGENFUNCTIONS [J].
CHENG, SY .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 55 (02) :379-381
[7]  
Davies E. B., 1989, CAMBRIDGE TRACTS MAT, V92
[8]  
HERSCH J, 1970, CR ACAD SCI A MATH, V270, P1645
[9]  
ILMANEN T, 1993, J DIFFER GEOM, V38, P417
[10]  
MULLER K, 1966, LECTURE NOTES MATH, V17