Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTS)

被引:194
作者
Moons, A [1 ]
机构
[1] Natl Res Council Canada, Biotechnol Res Inst, Montreal, PQ H4P 2R2, Canada
来源
PLANT HORMONES | 2005年 / 72卷
关键词
D O I
10.1016/S0083-6729(05)72005-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Plant glutathioneS-transferases (GSTs) are a heterogeneous superfamily of multifunctional proteins, grouped into six classes. The tau (GSTU) and phi (GSTF) class GSTs are the most represented ones and are plant-specific, whereas the smaller theta (GSTT) and zeta (GSTZ) classes are also found in animals. The lambda GSTs (GSTL) and the dehydroascorbate reductases (DHARs) are more distantly related. Plant GSTs perform a variety of pivotal catalytic and non-enzymatic functions in normal plant development and plant stress responses, roles that are only emerging. Catalytic functions include glutathione (GSH)-onjugation in the metabolic detoxification of herbicides and natural products. GSTs can also catalyze GSH-dependent peroxidase reactions that scavenge toxic organic hydroperoxides and protect from oxidative damage. GSTs can furthermore catalyze GSH-dependent isomerizations in endogenous metabolism, exhibit GSH-dependent thioltransferase safeguarding protein. function from oxidative damage and DHAR activity functioning in redox horaeostasis. Plant GSTs can also function as ligandins or binding proteins for phytohormones (i.e., auxins and cytokinins) or anthocyanins, thereby facilitating their distribution and transport. Finally, GSTs are also indirectly involved in the regulation of apoptosis and possibly also in stress signaling. Plant GST genes exhibit a diversity of expression patterns during biotic and abiotic stresses. Stress-induced plant growth regulators (i.e., jasmonic acid [JA], salicylic acid [SA], ethylene [ETH], and nitric oxide [NO] differentially activate GST gene expression. It is becoming increasingly evident that unique combinations of multiple, often interactive signaling pathways from various phytohormones and reactive oxygen species or antioxidants render the distinct transcriptional activation patterns of individual GSTs during stress. Underestimated post-transcriptional regulations of individual GSTs are becoming increasingly evident and roles for phytohormones (i.e., ABA and JA) in these processes are being anticipated as well. Finally, indications are emerging that NO may regulate the activity of specific plant GSTs. In this review, the current knowledge on the regulatory and functional interactions of phytohormones and plant GSTs are covered. We refer to a previous extensive review on plant GSTs (Marrs, 1996) for most earlier work. An introduction on the classification and roles of plant GSTs is included here, but these topics are more extensively discussed in other reviews (Dixon et al., 2002a; Edwards et al., 2000; Frova, 2003). (c) 2005 Elsevier Inc.
引用
收藏
页码:155 / 202
页数:48
相关论文
共 84 条
[1]   Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases [J].
Alfenito, MR ;
Souer, E ;
Goodman, CD ;
Buell, R ;
Mol, J ;
Koes, R ;
Walbot, V .
PLANT CELL, 1998, 10 (07) :1135-1149
[2]   Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity [J].
Alvarez, ME ;
Pennell, RI ;
Meijer, PJ ;
Ishikawa, A ;
Dixon, RA ;
Lamb, C .
CELL, 1998, 92 (06) :773-784
[3]   Drought regulation of GST8, encoding the Arabidopsis homologue of ParC/Nt107 glutathione transferase/peroxidase [J].
Bianchi, MW ;
Roux, C ;
Vartanian, N .
PHYSIOLOGIA PLANTARUM, 2002, 116 (01) :96-105
[4]   Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis [J].
Brown, DE ;
Rashotte, AM ;
Murphy, AS ;
Normanly, J ;
Tague, BW ;
Peer, WA ;
Taiz, L ;
Muday, GK .
PLANT PHYSIOLOGY, 2001, 126 (02) :524-535
[5]   The auxin, hydrogen peroxide and salicylic acid induced expression of the Arabidopsis GST6 promoter is mediated in part by an ocs element [J].
Chen, WQ ;
Singh, KB .
PLANT JOURNAL, 1999, 19 (06) :667-677
[6]   Detoxification of xenobiotics by plants: Chemical modification and vacuolar compartmentation [J].
Coleman, JOD ;
BlakeKalff, MMA ;
Davies, TGE .
TRENDS IN PLANT SCIENCE, 1997, 2 (04) :144-151
[7]   Biosynthesis and action of jasmonates in plants [J].
Creelman, RA ;
Mullet, JE .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1997, 48 :355-381
[8]   A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass [J].
Cummins, I ;
Cole, DJ ;
Edwards, R .
PLANT JOURNAL, 1999, 18 (03) :285-292
[9]   Protein S-thiolation and regulation of microsomal glutathione transferase activity by the glutathione redox couple [J].
Dafre, AL ;
Sies, H ;
Akerboom, T .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1996, 332 (02) :288-294
[10]   Involvement of the Arabidopsis α-DOX1 fatty acid dioxygenase in protection against oxidative stress and cell death [J].
de Leon, IP ;
Sanz, A ;
Hamberg, M ;
Castresana, C .
PLANT JOURNAL, 2002, 29 (01) :61-72