Convergence of variational regularization methods for imaging on Riemannian manifolds

被引:5
作者
Thorstensen, Nicolas [1 ]
Scherzer, Otmar [1 ,2 ]
机构
[1] Univ Vienna, Computat Sci Ctr, A-1090 Vienna, Austria
[2] Austrian Acad Sci, Radon Inst Computat & Appl Math, A-4040 Linz, Austria
基金
奥地利科学基金会;
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
10.1088/0266-5611/28/1/015007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider abstract operator equations Fu = y, where F is a compact linear operator between Hilbert spaces U and V, which are function spaces on closed, finite-dimensional Riemannian manifolds, respectively. This setting is of interest in numerous applications such as computer vision and non-destructive evaluation. In this work, we study the approximation of the solution of the ill-posed operator equation with Tikhonov-type regularization methods. We state well-posedness, stability, convergence and convergence rates of the regularization methods. Moreover, we study in detail the numerical analysis and the numerical implementation. Finally, we provide for three different inverse problems numerical experiments.
引用
收藏
页数:17
相关论文
共 29 条
  • [1] Morphological component analysis and inpainting on the sphere: Application in physics and astrophysics
    Abrial, P.
    Moudden, Y.
    Starck, J. -L.
    Afeyan, B.
    Bobin, J.
    Fadili, J.
    Nguyen, M. K.
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2007, 13 (06) : 729 - 748
  • [2] Ambrosio L., 2000, Oxford Mathematical Monographs
  • [3] [Anonymous], 1999, Progress in Mathematics
  • [4] [Anonymous], APPL MATH MATH COMPU
  • [5] Chavel I., 1984, EIGENVALUES RIEMANNI
  • [6] Chung J., 2011, Handbook of Mathematical Methods in Imaging
  • [7] Processing textured surfaces via anisotropic geometric diffusion
    Clarenz, U
    Diewald, U
    Rumpf, M
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2004, 13 (02) : 248 - 261
  • [8] Clarenz U, 2003, VISUALIZATION AND MATHEMATICS III, P245
  • [9] An adaptive finite element method for the Laplace-Beltrami operator on implicitly defined surfaces
    Demlow, Alan
    Dziuk, Gerhard
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (01) : 421 - 442
  • [10] Descoteaux M, 2006, I S BIOMED IMAGING, P81