A necessary and sufficient condition for consensus over random networks

被引:325
作者
Tahbaz-Salehi, Alireza [1 ]
Jadbabaie, Ali [1 ]
机构
[1] Univ Penn, GRASP Lab, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
关键词
consensus problem; random graphs; tail events; weak ergodicity;
D O I
10.1109/TAC.2008.917743
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the consensus problem for stochastic discrete-time linear dynamical systems. The underlying graph of such systems at a given time instance is derived from a random graph process, independent of other time instances. For such a framework, we present a necessary and sufficient condition for almost sure asymptotic consensus using simple ergodicity and probabilistic arguments. This easily verifiable condition uses the spectrum of the average weight matrix. Finally, we investigate a special case for which the linear dynamical system converges to a fixed vector with probability 1.
引用
收藏
页码:791 / 795
页数:5
相关论文
共 20 条
[1]  
[Anonymous], 1956, THEOR PROBAB APPL+, DOI [10.1137/1101006, DOI 10.1137/1101006]
[2]  
Berman A., 1987, NONNEGATIVE MATRICES
[3]  
Blondel VD, 2005, IEEE DECIS CONTR P, P2996
[4]  
Boyd S, 2005, IEEE INFOCOM SER, P1653
[5]   Randomized gossip algorithms [J].
Boyd, Stephen ;
Ghosh, Arpita ;
Prabhakar, Balaji ;
Shah, Devavrat .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (06) :2508-2530
[6]  
CHATTORAJ DK, 1977, INDIAN J BIOCHEM BIO, V14, P1
[7]   THE ERGODIC-THEORY OF MARKOV-CHAINS IN RANDOM-ENVIRONMENTS [J].
COGBURN, R .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1984, 66 (01) :109-128
[8]  
COGBURN R, 1986, P AM MATH SOC SUMM R, V50, P199
[9]   Robust rendezvous for mobile autonomous agents via proximity graphs. in arbitrary dimensions [J].
Cortes, Jorge ;
Martinez, Sonia ;
Bullo, Francesco .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (08) :1289-1298
[10]   REACHING A CONSENSUS [J].
DEGROOT, MH .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1974, 69 (345) :118-121