Transport on percolation clusters with power-law distributed bond strengths

被引:11
作者
Alava, M
Moukarzel, CF
机构
[1] Aalto Univ, Phys Lab, FIN-02015 Espoo, Finland
[2] NORDITA, DK-2100 Copenhagen, Denmark
[3] CINVESTAV, Fis Aplicada, Merida 97310, Yucatan, Mexico
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 05期
关键词
D O I
10.1103/PhysRevE.67.056106
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The simplest transport problem, namely finding the maximum flow of current, or maxflow, is investigated on critical percolation clusters in two and three dimensions, using a combination of extremal statistics arguments and exact numerical computations, for power-law distributed bond strengths of the type P(sigma)similar tosigma(-alpha). Assuming that only cutting bonds determine the flow, the maxflow critical exponent v is found to be v(alpha)=(d-1)nu+1/(1-alpha). This prediction is confirmed with excellent accuracy using large-scale numerical simulation in two and three dimensions. However, in the region of anomalous bond capacity distributions (0less than or equal toalphaless than or equal to1) we demonstrate that, due to cluster-structure fluctuations, it is not the cutting bonds but the blobs that set the transport properties of the backbone. This "blob dominance" avoids a crossover to a regime where structural details, the distribution of the number of red or cutting bonds, would set the scaling. The restored scaling exponents, however, still follow the simplistic red bond estimate. This is argued to be due to the existence of a hierarchy of so-called minimum cut configurations, for which cutting bonds form the lowest level, and whose transport properties scale all in the same way. We point out the relevance of our findings to other scalar transport problems (i.e., conductivity).
引用
收藏
页数:8
相关论文
共 34 条
[1]  
Alava MJ, 2001, PHASE TRANS, V18, P143, DOI 10.1016/S1062-7901(01)80009-4
[2]   HOPPING CONDUCTIVITY IN DISORDERED SYSTEMS [J].
AMBEGAOKAR, V ;
HALPERIN, BI ;
LANGER, JS .
PHYSICAL REVIEW B-SOLID STATE, 1971, 4 (08) :2612-+
[3]   NON-UNIVERSAL CRITICAL-BEHAVIOR OF RANDOM RESISTOR NETWORKS WITH A SINGULAR DISTRIBUTION OF CONDUCTANCES [J].
BENMIZRAHI, A ;
BERGMAN, DJ .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1981, 14 (06) :909-922
[4]  
Bunde A., 1996, FRACTALS DISORDERED, DOI DOI 10.1007/978-3-642-84868-1
[5]   CLUSTER STRUCTURE NEAR THE PERCOLATION-THRESHOLD [J].
CONIGLIO, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (12) :3829-3844
[6]  
CORMEN TH, 1993, INTRO ALGORITHMS, pCH6
[7]  
DEGENNES PG, 1976, J PHYS LETT-PARIS, V37, pL1, DOI 10.1051/jphyslet:019760037010100
[8]  
DEUTSCHER G, 1979, J PHYS LETT-PARIS, V40, pL219, DOI 10.1051/jphyslet:019790040010021900
[9]   TRANSPORT-PROPERTIES OF CONTINUUM-SYSTEMS NEAR THE PERCOLATION-THRESHOLD [J].
FENG, SC ;
HALPERIN, BI ;
SEN, PN .
PHYSICAL REVIEW B, 1987, 35 (01) :197-214
[10]   A NEW APPROACH TO THE MAXIMUM-FLOW PROBLEM [J].
GOLDBERG, AV ;
TARJAN, RE .
JOURNAL OF THE ACM, 1988, 35 (04) :921-940