Nonuniform symmetry breaking in noncommutative λΦ4 theory -: art. no. 065008

被引:29
作者
Castorina, P
Zappalà, D
机构
[1] Univ Catania, Dept Phys, I-95123 Catania, Italy
[2] Ist Nazl Fis Nucl, Sez Catania, I-95123 Catania, Italy
关键词
D O I
10.1103/PhysRevD.68.065008
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Spontaneous symmetry breaking in noncommutative cutoff lambdaPhi(4) theory has been analyzed by using the formalism of the effective action for composite operators in the Hartree-Fock approximation. It turns out that there is no phase transition to a constant vacuum expectation of the field and the broken phase corresponds to a nonuniform background. By considering <phi(x)>=A cos((Q) over right arrow .(x) over right arrow) the generated mass gap depends on the angles among the momenta (k) over right arrow and (Q) over right arrow and the noncommutativity parameter (theta) over right arrow. The order of the transition is not easily determinable in our approximation.
引用
收藏
页数:7
相关论文
共 23 条
[1]   Stripes from (non-commutative) stars [J].
Ambjorn, J ;
Catterall, S .
PHYSICS LETTERS B, 2002, 549 (1-2) :253-259
[2]  
[Anonymous], J HIGH ENERGY PHYS
[3]   On the unitarity problem in space/time noncommutative theories [J].
Bahns, D ;
Doplicher, S ;
Fredenhagen, K ;
Piacitelli, G .
PHYSICS LETTERS B, 2002, 533 (1-2) :178-181
[4]   Non-commutative field theories beyond perturbation theory [J].
Bietenholz, W ;
Hofheinz, F ;
Nishimura, J .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2003, 51 (7-8) :745-752
[5]  
BIETENHOLZ W, HUEP0235, P23002
[6]   NONTRIVIALITY OF SPONTANEOUSLY BROKEN LAMBDA-PHI-4 THEORIES [J].
BRANCHINA, V ;
CASTORINA, P ;
CONSOLI, M ;
ZAPPALA, D .
PHYSICAL REVIEW D, 1990, 42 (10) :3587-3590
[7]  
BRAZOVSKII SA, 1975, ZH EKSP TEOR FIZ+, V68, P175
[8]   Noncommutative field theory and spontaneous symmetry breaking [J].
Campbell, BA ;
Kaminsky, K .
NUCLEAR PHYSICS B, 2000, 581 (1-2) :240-256
[9]   Noncommutative synchrotron -: art. no. 065008 [J].
Castorina, P ;
Iorio, A ;
Zappalà, D .
PHYSICAL REVIEW D, 2004, 69 (06) :6
[10]   Renormalization group equations and the Lifshitz point in noncommutative Landau-Ginsburg theory [J].
Chen, GH ;
Wu, YS .
NUCLEAR PHYSICS B, 2002, 622 (1-2) :189-214