Constrained noninformative priors in risk assessment

被引:51
作者
Atwood, CL [1 ]
机构
[1] IDAHO NATL ENGN LAB,IDAHO FALLS,ID 83415
关键词
D O I
10.1016/0951-8320(96)00026-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A constrained noninformative prior distribution, a generalization of the Jeffreys noninformative prior, is defined for a single unknown parameter as the distribution corresponding to the maximum entropy distribution, subject to the assumed constraint(s), in the transformed model where the unknown parameter is approximately a location parameter. This note illustrates this idea with binomial and Poisson data models, and gives an example from risk assessment showing the practical usefulness of the constrained noninformative prior.
引用
收藏
页码:37 / 46
页数:10
相关论文
共 13 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS
[2]  
Berger JO., 1985, STATISTICAL DECISION
[3]  
Bernardo Jose M, 2009, BAYESIAN THEORY, V405
[4]  
Box GE., 2011, BAYESIAN INFERENCE S
[5]   AN INFORMATION-THEORETIC APPROACH TO INCORPORATING PRIOR INFORMATION IN BINOMIAL SAMPLING [J].
DYER, D ;
CHIOU, P .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1984, 13 (17) :2051-2083
[6]  
GRANT GM, 1995, INEL940158 ID NAT EN
[7]  
HARRIS B, 1982, ENCY STAT SCI, V2
[8]  
*IMSL, 1987, US MAN STAT LIBR US
[9]   PRIOR PROBABILITIES [J].
JAYNES, ET .
IEEE TRANSACTIONS ON SYSTEMS SCIENCE AND CYBERNETICS, 1968, SSC4 (03) :227-&
[10]   APPROXIMATE BAYESIAN-INFERENCE IN CONDITIONALLY INDEPENDENT HIERARCHICAL-MODELS (PARAMETRIC EMPIRICAL BAYES MODELS) [J].
KASS, RE ;
STEFFEY, D .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (407) :717-726