Regularization of the Burnett equations via relaxation

被引:100
作者
Jin, S
Slemrod, M
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Univ Wisconsin, Ctr Math Sci, Madison, WI 53715 USA
基金
美国国家科学基金会;
关键词
Boltzmann equation; Chapman-Enskog expansion; Burnett equations; relaxation; entropy;
D O I
10.1023/A:1010365123288
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The classical Chapman-Enskog expansions for the pressure deviator P and heat flux q provide a natural bridge between the kinetic description of gas dynamics as given by the Boltzmann equation and continuum mechanics as given by the balance laws of mass, momentum, energy supplemented by the expansions for P and q. Truncation of these expansions beyond first (Navier-Stokes) order yields instability of the rest state and is inconsistent with thermodynamics. In this paper we propose a visco-elastic relaxation approximation that eliminates the instability paradox. This system is weakly parabolic, has a linearly hyperbolic convection part, and is endowed with a generalized entropy inequality. It agrees with the solution of the Boltzmann equation up to the Burnett order via the Chapman Enskog expansion.
引用
收藏
页码:1009 / 1033
页数:25
相关论文
共 25 条
[1]  
AGARWAL R. K., 1999, 30 AIAA FLUID DYN C
[2]   Time-derivatives and frame-invariance beyond Newtonian fluids [J].
Biscari, P ;
Cercignani, C ;
Slemrod, M .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE ASTRONOMIE, 2000, 328 (05) :417-422
[3]  
Bobylev A. V., 1980, Soviet Physics - Doklady, V25, P30
[4]  
BOBYLEV AV, 1982, SOVIET PHYSICS DOKLA, V27
[5]  
Cercignani C, 1988, BOLTZMANN EQUATION I
[6]   HYPERBOLIC CONSERVATION-LAWS WITH STIFF RELAXATION TERMS AND ENTROPY [J].
CHEN, GQ ;
LEVERMORE, CD ;
LIU, TP .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (06) :787-830
[7]   Relaxation of energy and approximate Riemann solvers for general pressure laws in fluid dynamics [J].
Coquel, F ;
Perthame, B .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2223-2249
[8]  
Ferziger J. H., 1972, MATH THEORY TRANSPOR
[9]  
Fiscko K A, 1988, P 16 INT S RAR GAS D
[10]  
FOCH TD, 1973, ACTA PHYSICA AUSTR S, V10, P123