Error estimates for scattered data interpolation on spheres

被引:122
作者
Jetter, K [1 ]
Stöckler, J
Ward, JD
机构
[1] Univ Hohenheim, Inst Angew Math & Stat, D-70593 Stuttgart, Germany
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
关键词
scattered data interpolation; spherical harmonics; Markov inequality; norming set; best approximation;
D O I
10.1090/S0025-5718-99-01080-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study Sobolev type estimates for the approximation order resulting from using strictly positive definite kernels to do interpolation on the n-sphere. The interpolation knots are scattered. Our approach partly follows the general theory of Golomb and Weinberger and related estimates. These error estimates are then based on series expansions of smooth functions in terms of spherical harmonics. The Markov inequality for spherical harmonics is essential to our analysis and is used in order to find lower bounds for certain sampling operators on spaces of spherical harmonics.
引用
收藏
页码:733 / 747
页数:15
相关论文
共 23 条
[1]  
[Anonymous], CONSTRUCTIVE THEORY
[2]  
[Anonymous], 1995, MULTIVARIATE APPROXI
[3]  
BOS L, 1995, INDIANA U MATH J, V44, P115
[4]  
Cheney E.W., 1995, APPROXIMATION THEORY, V6, P145
[5]   MULTIRESOLUTION ANALYSIS AND WAVELETS ON S-2 AND S-3 [J].
DAHLKE, S ;
DAHMEN, W ;
WEINREICH, I ;
SCHMITT, E .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1995, 16 (1-2) :19-41
[6]  
DeVore Ronald A., 1993, CONSTRUTIVE APPROXIM, V303, DOI DOI 10.1007/978-3-662-02888-9
[7]  
DYN N, IN PRESS CONSTR APPR
[8]   Combined spherical harmonic and wavelet expansion - A future concept in earth's gravitational determination [J].
Freeden, W ;
Windheuser, U .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1997, 4 (01) :1-37
[9]  
FREEDEN W, 411995 OB
[10]  
Freeden W., 1981, MATH METHOD APPL SCI, V3, P551