A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants

被引:1793
作者
Nelson, Brook K. [1 ]
Cai, Xue [1 ]
Nebenfuehr, Andreas [1 ]
机构
[1] Univ Tennessee, Dept Biochem Cellular & Mol Biol, Knoxville, TN 37996 USA
关键词
organelles; fluorescent protein; protein localization; Arabidopsis thaliana;
D O I
10.1111/j.1365-313X.2007.03212.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Genome sequencing has resulted in the identification of a large number of uncharacterized genes with unknown functions. It is widely recognized that determination of the intracellular localization of the encoded proteins may aid in identifying their functions. To facilitate these localization experiments, we have generated a series of fluorescent organelle markers based on well-established targeting sequences that can be used for co-localization studies. In particular, this organelle marker set contains indicators for the endoplasmic reticulum, the Golgi apparatus, the tonoplast, peroxisomes, mitochondria, plastids and the plasma membrane. All markers were generated with four different fluorescent proteins (FP) (green, cyan, yellow or red FPs) in two different binary plasmids for kanamycin or glufosinate selection, respectively, to allow for flexible combinations. The labeled organelles displayed characteristic morphologies consistent with previous descriptions that could be used for their positive identification. Determination of the intracellular distribution of three previously uncharacterized proteins demonstrated the usefulness of the markers in testing predicted subcellular localizations. This organelle marker set should be a valuable resource for the plant community for such co-localization studies. In addition, the Arabidopsis organelle marker lines can also be employed in plant cell biology teaching labs to demonstrate the distribution and dynamics of these organelles.
引用
收藏
页码:1126 / 1136
页数:11
相关论文
共 76 条
[1]  
[Anonymous], 1993, Biol. Chem. Hoppe Seyler, DOI DOI 10.1515/BCHM3.1993.374.1-6.143
[2]  
[Anonymous], P 6 INT C INT SYST M
[3]  
Baldwin TC, 2001, PLANT CELL, V13, P2283, DOI 10.1105/tpc.13.10.2283
[4]   Extensive feature detection of N-terminal protein sorting signals [J].
Bannai, H ;
Tamada, Y ;
Maruyama, O ;
Nakai, K ;
Miyano, S .
BIOINFORMATICS, 2002, 18 (02) :298-305
[5]   A Rab1 GTPase is required for transport between the endoplasmic reticulum and Golgi apparatus and for normal Golgi movement in plants [J].
Batoko, H ;
Zheng, HQ ;
Hawes, C ;
Moore, I .
PLANT CELL, 2000, 12 (11) :2201-2217
[6]   Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network [J].
Boevink, P ;
Oparka, K ;
Cruz, SS ;
Martin, B ;
Betteridge, A ;
Hawes, C .
PLANT JOURNAL, 1998, 15 (03) :441-447
[7]   Membrane protein transport between the endoplasmic reticulum and the golgi in tobacco leaves is energy dependent but cytoskeleton independent: Evidence from selective photobleaching [J].
Brandizzi, F ;
Snapp, EL ;
Roberts, AG ;
Lippincott-Schwartz, J ;
Hawes, C .
PLANT CELL, 2002, 14 (06) :1293-1309
[8]   DAG, a gene required for chloroplast differentiation and palisade development in Antirrhinum majus [J].
Chatterjee, M ;
Sparvoli, S ;
Edmunds, C ;
Garosi, P ;
Findlay, K ;
Martin, C .
EMBO JOURNAL, 1996, 15 (16) :4194-4207
[9]   Computational method to predict mitochondrially imported proteins and their targeting sequences [J].
Claros, MG ;
Vincens, P .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1996, 241 (03) :779-786
[10]  
CLAROS MG, 1994, COMPUT APPL BIOSCI, V10, P685