A proteogenomic update to Yersinia: enhancing genome annotation

被引:42
作者
Payne, Samuel H. [1 ]
Huang, Shih-Ting [1 ]
Pieper, Rembert [1 ]
机构
[1] J Craig Venter Inst, Rockville, MD 20850 USA
来源
BMC GENOMICS | 2010年 / 11卷
基金
美国国家卫生研究院;
关键词
MASS-SPECTROMETRY; SEQUENCE; PROTEOME; PEPTIDES; IDENTIFICATION; TEMPERATURE; PROTEINS; GENE;
D O I
10.1186/1471-2164-11-460
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Modern biomedical research depends on a complete and accurate proteome. With the widespread adoption of new sequencing technologies, genome sequences are generated at a near exponential rate, diminishing the time and effort that can be invested in genome annotation. The resulting gene set contains numerous errors in even the most basic form of annotation: the primary structure of the proteins. Results: The application of experimental proteomics data to genome annotation, called proteogenomics, can quickly and efficiently discover misannotations, yielding a more accurate and complete genome annotation. We present a comprehensive proteogenomic analysis of the plague bacterium, Yersinia pestis KIM. We discover non-annotated genes, correct protein boundaries, remove spuriously annotated ORFs, and make major advances towards accurate identification of signal peptides. Finally, we apply our data to 21 other Yersinia genomes, correcting and enhancing their annotations. Conclusions: In total, 141 gene models were altered and have been updated in RefSeq and Genbank, which can be accessed seamlessly through any NCBI tool (e. g. blast) or downloaded directly. Along with the improved gene models we discover new, more accurate means of identifying signal peptides in proteomics data.
引用
收藏
页数:10
相关论文
共 29 条
[1]   Large-scale identification of N-terminal peptides in the halophilic archaea Halobacterium salinarum and Natronomonas pharaonis [J].
Aivaliotis, Michalis ;
Gevaert, Kris ;
Falb, Michaela ;
Tebbe, Andreas ;
Konstantinidis, Kosta ;
Bisle, Birgit ;
Klein, Christian ;
Martens, Lennart ;
Staes, An ;
Timmerman, Evy ;
Van Damme, Jozef ;
Siedler, Frank ;
Pfeiffer, Friedhelm ;
Vandekerckhove, Joel ;
Oesterhelt, Dieter .
JOURNAL OF PROTEOME RESEARCH, 2007, 6 (06) :2195-2204
[2]  
Ansong Charles, 2008, Briefings in Functional Genomics & Proteomics, V7, P50, DOI 10.1093/bfgp/eln010
[3]  
BAUDET M, 2009, MOL CELL PROTEOMICS
[4]   Improved prediction of signal peptides: SignalP 3.0 [J].
Bendtsen, JD ;
Nielsen, H ;
von Heijne, G ;
Brunak, S .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 340 (04) :783-795
[5]  
BRUBAKER RR, 2002, MOL MED MICROBIOLOGY, V3, P2033
[6]   Discovery and revision of Arabidopsis genes by proteogenomics [J].
Castellana, Natalie E. ;
Payne, Samuel H. ;
Shen, Zhouxin ;
Stanke, Mario ;
Bafna, Vineet ;
Briggs, Steven P. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (52) :21034-21038
[7]   Complete genome sequence of Yersinia pestis strains Antiqua and Nepal516:: Evidence of gene reduction in an emerging pathogen [J].
Chain, Patrick S. G. ;
Hu, Ping ;
Malfatti, Stephanie A. ;
Radnedge, Lyndsay ;
Larimer, Frank ;
Vergez, Lisa M. ;
Worsham, Patricia ;
Chu, May C. ;
Andersen, Gary L. .
JOURNAL OF BACTERIOLOGY, 2006, 188 (12) :4453-4463
[8]  
Crabtree Jonathan, 2007, V408, P93, DOI 10.1007/978-1-59745-547-3_6
[9]   Re-annotating the Mycoplasma pneumoniae genome sequence:: adding value, function and reading frames [J].
Dandekar, T ;
Huynen, M ;
Regula, JT ;
Ueberle, B ;
Zimmermann, CU ;
Andrade, MA ;
Doerks, T ;
Sánchez-Pulido, L ;
Snel, B ;
Suyama, M ;
Yuan, YP ;
Herrmann, R ;
Bork, P .
NUCLEIC ACIDS RESEARCH, 2000, 28 (17) :3278-3288
[10]   Genome sequence of Yersinia pestis KIM [J].
Deng, W ;
Burland, V ;
Plunkett, G ;
Boutin, A ;
Mayhew, GF ;
Liss, P ;
Perna, NT ;
Rose, DJ ;
Mau, B ;
Zhou, SG ;
Schwartz, DC ;
Fetherston, JD ;
Lindler, LE ;
Brubaker, RR ;
Plano, GV ;
Straley, SC ;
McDonough, KA ;
Nilles, ML ;
Matson, JS ;
Blattner, FR ;
Perry, RD .
JOURNAL OF BACTERIOLOGY, 2002, 184 (16) :4601-4611