Simulating maximal quantum entanglement without communication

被引:91
作者
Cerf, NJ
Gisin, N
Massar, S
Popescu, S
机构
[1] Free Univ Brussels, Ctr Quantum Informat & Commun, Ecole Polytech, B-1050 Brussels, Belgium
[2] Univ Geneva, GAP Opt, CH-1211 Geneva, Switzerland
[3] Free Univ Brussels, Lab Informat Quant, B-1050 Brussels, Belgium
[4] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England
[5] Hewlett Packard Labs, Bristol BS12 6QZ, Avon, England
关键词
D O I
10.1103/PhysRevLett.94.220403
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is known that all causal correlations between two parties which output each 1 bit, a and b, when receiving each 1 bit, x and y, can be expressed as convex combinations of local correlations (i.e., correlations that can be simulated with local random variables) and nonlocal correlations of the form a+b=xy mod 2. We show that a single instance of the latter elementary nonlocal correlation suffices to simulate exactly all possible projective measurements that can be performed on a maximally entangled state of two qubits, with no communication needed at all. This elementary nonlocal correlation thus defines some unit of nonlocality, which we call a nl bit.
引用
收藏
页数:4
相关论文
共 26 条
[1]   Quantum correlations and secret bits -: art. no. 020501 [J].
Acín, A ;
Gisin, N .
PHYSICAL REVIEW LETTERS, 2005, 94 (02)
[2]   Equivalence between two-qubit entanglement and secure key distribution -: art. no. 167901 [J].
Acín, A ;
Masanes, L ;
Gisin, N .
PHYSICAL REVIEW LETTERS, 2003, 91 (16) :167901-167901
[3]   Nonlocal correlations as an information-theoretic resource [J].
Barrett, J ;
Linden, N ;
Massar, S ;
Pironio, S ;
Popescu, S ;
Roberts, D .
PHYSICAL REVIEW A, 2005, 71 (02)
[4]  
Bell J., 1987, Speakable and Unspeakable in Quantum Theory
[5]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[6]   Concentrating partial entanglement by local operations [J].
Bennett, CH ;
Bernstein, HJ ;
Popescu, S ;
Schumacher, B .
PHYSICAL REVIEW A, 1996, 53 (04) :2046-2052
[7]  
BOUWMEESTER D, 2000, PHYS QUANTUM INFORMA
[8]   Quantum communication complexity [J].
Brassard, G .
FOUNDATIONS OF PHYSICS, 2003, 33 (11) :1593-1616
[9]   Cost of exactly simulating quantum entanglement with classical communication [J].
Brassard, G ;
Cleve, R ;
Tapp, A .
PHYSICAL REVIEW LETTERS, 1999, 83 (09) :1874-1877
[10]   Classical teleportation of a quantum bit [J].
Cerf, NJ ;
Gisin, N ;
Massar, S .
PHYSICAL REVIEW LETTERS, 2000, 84 (11) :2521-2524