Mechanism underlying slow kinetics of the OFF gating current in Shaker potassium channel

被引:36
作者
Melishchuk, A [1 ]
Armstrong, CM [1 ]
机构
[1] Univ Penn, Sch Med, Dept Physiol, Philadelphia, PA 19104 USA
关键词
D O I
10.1016/S0006-3495(01)76189-9
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Based on the structure of the KcsA potassium channel, the Shaker K+ channel is thought to have, near the middle of the membrane, a cavity that can be occupied by a permeant or a blocking cation. We have studied the interaction between cations in the cavity and the activation gate of the channel, using a set of monovalent cations together with Shaker mutants that modify the structure of the cavity. Our results show that reducing the size of the side chain at position 470 makes it possible for the mutant channel, unlike native Shaker, to close with tetraethylammonium (TEA(+)) or the long-chain TEA-derivative C10(+) trapped inside the channel. Neither 1470 mutants nor Shaker can close when N-methyl-glucamine (NMG(+)) is in the channel, even though this ion is smaller than C10(+). Apparently, the carbohydrate side chain of NMG(+) prevents gate closing. Gating currents recorded from Shaker and 1470C were measured in the presence of different intracellular cations to further analyze the interaction of cations with the gate. Our results suggest that the cavity in Shaker is so small that even permeant cations like Rb+ or Cs+ must leave the cavity before the channel gate can close.
引用
收藏
页码:2167 / 2175
页数:9
相关论文
共 27 条
[1]   ACETYLCHOLINE-RECEPTOR CHANNEL STRUCTURE PROBED IN CYSTEINE-SUBSTITUTION MUTANTS [J].
AKABAS, MH ;
STAUFFER, DA ;
XU, M ;
KARLIN, A .
SCIENCE, 1992, 258 (5080) :307-310
[2]   TIME COURSE OF TEA+-INDUCED ANOMALOUS RECTIFICATION IN SQUID GIANT AXONS [J].
ARMSTRONG, CM .
JOURNAL OF GENERAL PHYSIOLOGY, 1966, 50 (02) :491-+
[4]   Two functionally distinct subsites for the binding of internal blockers to the pore of voltage-activated K+ channels [J].
Baukrowitz, T ;
Yellen, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (23) :13357-13361
[5]   MOLECULAR-BASIS OF GATING CHARGE IMMOBILIZATION IN SHAKER POTASSIUM CHANNELS [J].
BEZANILLA, F ;
PEROZO, E ;
PAPAZIAN, DM ;
STEFANI, E .
SCIENCE, 1991, 254 (5032) :679-683
[6]   THE INTERNAL QUATERNARY AMMONIUM RECEPTOR-SITE OF SHAKER POTASSIUM CHANNELS [J].
CHOI, KL ;
MOSSMAN, C ;
AUBE, J ;
YELLEN, G .
NEURON, 1993, 10 (03) :533-541
[7]   TETRAETHYLAMMONIUM BLOCKADE DISTINGUISHES 2 INACTIVATION MECHANISMS IN VOLTAGE-ACTIVATED K+ CHANNELS [J].
CHOI, KL ;
ALDRICH, RW ;
YELLEN, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (12) :5092-5095
[8]   Blocker protection in the pore of a voltage-gated K+ channel and its structural implications [J].
del Camino, D ;
Holmgren, M ;
Liu, Y ;
Yellen, G .
NATURE, 2000, 403 (6767) :321-325
[9]   The structure of the potassium channel:: Molecular basis of K+ conduction and selectivity [J].
Doyle, DA ;
Cabral, JM ;
Pfuetzner, RA ;
Kuo, AL ;
Gulbis, JM ;
Cohen, SL ;
Chait, BT ;
MacKinnon, R .
SCIENCE, 1998, 280 (5360) :69-77
[10]   ANOMALOUS PERMEABILITIES OF EGG CELL-MEMBRANE OF A STARFISH IN K+-TL+ MIXTURES [J].
HAGIWARA, S ;
MIYAZAKI, S ;
KRASNE, S ;
CIANI, S .
JOURNAL OF GENERAL PHYSIOLOGY, 1977, 70 (03) :269-281