Coherent responses of sulphate concentration in Norwegian lakes:: relationships with sulphur deposition and climate indices

被引:9
作者
Dillon, PJ [1 ]
Skjelkvåle, BL
Somers, KM
Torseth, K
机构
[1] Trent Univ, Peterborough, ON K9J 7B8, Canada
[2] Norwegian Inst Water Res, N-0411 Oslo, Norway
[3] Ontario Minist Environm, Dorset Res Ctr, Dorset, ON P0A 1E0, Canada
[4] Norwegian Inst Air Res, N-2027 Kjeller, Norway
关键词
recovery; acid deposition; coherence; sulphate; climate change;
D O I
10.5194/hess-7-596-2003
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The coherence or synchrony in the trends in SO42- concentration in a set of 100 lakes in Norway that have a long-term chemical record was evaluated. Using a statistical technique that compares patterns or trends that are not uni-directional, the lakes were grouped into 18 subsets or clusters, each with between 2 and 11 lakes that had similar trends. These temporal trends were strongly correlated with several climate indices, notably the Arctic Oscillation Index (AOI) measured in the autumn. and the annual North Atlantic Oscillation Index (NAOI). Because these clusters of lakes were spatially dispersed, they could not be compared directly with trends in wet S deposition, because S deposition varied substantially between lakes within each cluster. However, the average trend in SO42- concentration was evaluated in each of 10 regions of Norway that were defined previously on the basis of pollution load, meteorological variables and biogeography. Although these regions did not match the statistically-selected clusters of lakes with equal trends very closely there were similar, strong correlations between climate indices (the AOI and NAOI) and the 10 average SO42- trends. although there were even stronger relationships with average wet S deposition in the regions. When subsets of lakes with coherent SO42- trends were selected from within each of the 10 regions, both wet S deposition and the climate indices were strongly correlated with those SO42- trends. Hence, lakes in Norway respond to changes in wet S deposition and are influenced by large-scale, i.e. global, climate signals. Future evaluation of recovery of lakes affected by acid deposition must therefore consider the confounding effects of climate and potential climate change.
引用
收藏
页码:596 / 608
页数:13
相关论文
共 37 条
[2]  
BRIEN CJ, 1984, BIOMETRIKA, V71, P545
[3]   MODELING THE EFFECTS OF ACID DEPOSITION - CONTROL OF LONG-TERM SULFATE DYNAMICS BY SOIL SULFATE ADSORPTION [J].
COSBY, BJ ;
HORNBERGER, GM ;
WRIGHT, RF ;
GALLOWAY, JN .
WATER RESOURCES RESEARCH, 1986, 22 (08) :1283-1291
[4]   ASSESSING SIMILARITY BETWEEN PROFILES [J].
CRONBACH, LJ ;
GLESER, GC .
PSYCHOLOGICAL BULLETIN, 1953, 50 (06) :456-473
[5]   The effect of El Nino-related drought on the recovery of acidified lakes [J].
Dillon, PJ ;
Molot, LA ;
Futter, M .
ENVIRONMENTAL MONITORING AND ASSESSMENT, 1997, 46 (1-2) :105-111
[6]  
Dillon PJ, 2001, INT VER THEOR ANGEW, V27, P2615
[7]   RESPONSE OF THE PLASTIC LAKE CATCHMENT, ONTARIO, TO REDUCED SULFUR DEPOSITION [J].
DILLON, PJ ;
LAZERTE, BD .
ENVIRONMENTAL POLLUTION, 1992, 77 (2-3) :211-217
[9]   A paleolimnological assessment of the effects of post-1970 reductions of sulfur deposition in Sweden [J].
Ek, AS ;
Korsman, T .
CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES, 2001, 58 (08) :1692-1700
[10]   Recovery from acidification in European surface waters [J].
Evans, CD ;
Cullen, JM ;
Alewell, C ;
Kopácek, J ;
Marchetto, A ;
Moldan, F ;
Prechtel, A ;
Rogora, M ;
Vesely, J ;
Wright, R .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2001, 5 (03) :283-297