Characterization of the metal receptor sites in Escherichia coli Zur, an ultrasensitive zinc(II) metalloregulatory protein

被引:92
作者
Outten, CE
Tobin, DA
Penner-Hahn, JE
O'Halloran, TV
机构
[1] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Biochem Mol Biol & Cell Biol, Evanston, IL 60208 USA
[3] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA
关键词
D O I
10.1021/bi0155448
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Escherichia coli Zur protein is a Fur homologue that regulates expression of Zn(II) uptake systems. The zinc-loaded form of Zur is proposed to bind DNA and repress transcription of the znuABC genes. Recent in vitro data indicate that the transcriptional activity of Zur is half-maximal when free Zn(II) concentrations are in the sub-femtomolar range, making it the most sensitive Zn(II) metalloregulatory protein reported to date. Previous results indicate that Zur binds at least one zinc; however, little else is known about Zn(II) binding. We have purified E. coli Zur to homogeneity and found that it has two Zn(II) binding sites per monomer with different coordination environments. Using Zn(II) binding assays, ICP-AES analysis, and Zn EXAFS analysis, we show that one zinc is tightly bound in an S-3(N/O) coordination environment. Both Co(II) and Zn(II) were substituted into the second metal binding site and probed by EXAFS and UV-visible absorption spectroscopy. These studies indicate that Co(II) is bound in an S(N/O)(3) coordination environment with tetrahedral geometry. The Zn(II) EXAFS of Zn(2)Zur, which is consistent with the results for both sites, indicates an average coordination environment of S-2(N/O)(2), presumably due to one S(N/O)(3) site and one S-3(N/O) site. These studies reveal the coordination environments that confer such exceptional zinc sensitivity and may provide the foundation for understanding the molecular basis of metal ion selectivity. A comparison of the metal binding sites in Zur with its Fe(II)-sensing homologue Fur provides clues as to why these two proteins with similar structures respond to two very different metal ions.
引用
收藏
页码:10417 / 10423
页数:7
相关论文
共 29 条
[1]   The ferric uptake regulation (Fur) repressor is a zinc metalloprotein [J].
Althaus, EW ;
Outten, CE ;
Olson, KE ;
Cao, H ;
O'Halloran, TV .
BIOCHEMISTRY, 1999, 38 (20) :6559-6569
[2]   Metal ion binding to a zinc finger peptide containing the Cys-X2-Cys-X4-His-X4-Cys domain of a nucleic acid binding protein encoded by the Drosophila Fw-element [J].
Bavoso, A ;
Ostuni, A ;
Battistuzzi, G ;
Menabue, L ;
Saladini, M ;
Sola, M .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1998, 242 (02) :385-389
[3]   Metal and DNA binding properties of a two-domain fragment of neural zinc finger factor 1, a CCHC-type zinc binding protein [J].
Berkovits, HJ ;
Berg, JM .
BIOCHEMISTRY, 1999, 38 (51) :16826-16830
[4]  
Bertini I, 1984, Adv Inorg Biochem, V6, P71
[5]   Cd(II), Pb(II) and Zn(II) ions regulate expression of the metal-transporting P-type ATPase ZntA in Escherichia coli [J].
Binet, MRB ;
Poole, RK .
FEBS LETTERS, 2000, 473 (01) :67-70
[6]   ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli [J].
Brocklehurst, KR ;
Hobman, JL ;
Lawley, B ;
Blank, L ;
Marshall, SJ ;
Brown, NL ;
Morby, AP .
MOLECULAR MICROBIOLOGY, 1999, 31 (03) :893-902
[7]   BOND-VALENCE PARAMETERS OBTAINED FROM A SYSTEMATIC ANALYSIS OF THE INORGANIC CRYSTAL-STRUCTURE DATABASE [J].
BROWN, ID ;
ALTERMATT, D .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 1985, 41 (AUG) :244-247
[8]   The limitations of X-ray absorption spectroscopy for determining the structure of zinc sites in proteins. When is a tetrathiolate not a tetrathiolate? [J].
Clark-Baldwin, K ;
Tierney, DL ;
Govindaswamy, N ;
Gruff, ES ;
Kim, C ;
Berg, J ;
Koch, SA ;
Penner-Hahn, JE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (33) :8401-8409
[9]   Identification of the two zinc-bound cysteines in the ferric uptake regulation protein from Escherichia coli:: Chemical modification and mass spectrometry analysis [J].
de Peredo, AG ;
Saint-Pierre, C ;
Adrait, A ;
Jacquamet, L ;
Latour, JM ;
Michaud-Soret, I ;
Forest, E .
BIOCHEMISTRY, 1999, 38 (26) :8582-8589
[10]   CALCULATION OF PROTEIN EXTINCTION COEFFICIENTS FROM AMINO-ACID SEQUENCE DATA [J].
GILL, SC ;
VONHIPPEL, PH .
ANALYTICAL BIOCHEMISTRY, 1989, 182 (02) :319-326