Regulation of mitochondrial NADP+-dependent isocitrate dehydrogenase activity by glutathionylation

被引:113
作者
Kil, IS [1 ]
Park, JW [1 ]
机构
[1] Kyungpook Natl Univ, Dept Biochem, Coll Nat Sci, Taegu 702701, South Korea
关键词
D O I
10.1074/jbc.M411306200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recently, we demonstrated that the control of mitochondrial redox balance and oxidative damage is one of the primary functions of mitochondrial NADP(+)-dependent isocitrate dehydrogenase (IDPm). Because cysteine residue(s) in IDPm are susceptible to inactivation by a number of thiol-modifying reagents, we hypothesized that IDPm is likely a target for regulation by an oxidative mechanism, specifically glutathionylation. Oxidized glutathione led to enzyme inactivation with simultaneous formation of a mixed disulfide between glutathione and the cysteine residue(s) in IDPm, which was detected by immunoblotting with anti-GSH IgG. The inactivated IDPm was reactivated enzymatically by glutaredoxin2 in the presence of GSH, indicating that the inactivated form of IDPm is a glutathionyl mixed disulfide. Mass spectrometry and site-directed mutagenesis further confirmed that glutathionylation occurs to a Cys(269) of IDPm. The glutathionylated IDPm appeared to be significantly less susceptible than native protein to peptide fragmentation by reactive oxygen species and proteolytic digestion, suggesting that glutathionylation plays a protective role presumably through the structural alterations. HEK293 cells and intact respiring mitochondria treated with oxidants inducing GSH oxidation such as H2O2 or diamide showed a decrease in IDPm activity and the accumulation of glutathionylated enzyme. Using immunoprecipitation with anti-IDPm IgG and immunoblotting with anti-GSH IgG, we were also able to purify and positively identify glutathionylated IDPm from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice, a model for Parkinson's disease. The results of the current study indicate that IDPm activity appears to be modulated through enzymatic glutathionylation and deglutathionylation during oxidative stress.
引用
收藏
页码:10846 / 10854
页数:9
相关论文
共 48 条
[1]  
Albers D. S., 2000, Journal of Neural Transmission Supplement, V59, P133
[2]   Mitochondrial phospholipid hydroperoxide glutathione peroxidase plays a major role in preventing oxidative injury to cells [J].
Arai, M ;
Imai, H ;
Koumura, T ;
Yoshida, M ;
Emoto, K ;
Umeda, M ;
Chiba, N ;
Nakagawa, Y .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (08) :4924-4933
[3]   Antioxidant function of the mitochondrial protein SP-22 in the cardiovascular system [J].
Araki, M ;
Nanri, H ;
Ejima, K ;
Murasato, Y ;
Fujiwara, T ;
Nakashima, Y ;
Ikeda, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (04) :2271-2278
[4]   Regulation of PTP1B via glutathionylation of the active site cysteine 215 [J].
Barrett, WC ;
DeGnore, JP ;
König, S ;
Fales, HM ;
Keng, YF ;
Zhang, ZY ;
Yim, MB ;
Chock, PB .
BIOCHEMISTRY, 1999, 38 (20) :6699-6705
[5]   Cardiac mitochondrial NADP+-isocitrate dehydrogenase is inactivated through 4-hydroxynonenal adduct formation -: An event that precedes hypertrophy development [J].
Benderdour, M ;
Charron, G ;
deBlois, D ;
Comte, B ;
Des Rosiers, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (46) :45154-45159
[6]   Glutathione, iron and Parkinson's disease [J].
Bharath, S ;
Hsu, M ;
Kaur, D ;
Rajagopalan, S ;
Andersen, JK .
BIOCHEMICAL PHARMACOLOGY, 2002, 64 (5-6) :1037-1048
[7]  
BRANDWEIN HJ, 1981, J BIOL CHEM, V256, P2958
[8]  
CHAE HZ, 1994, J BIOL CHEM, V269, P27670
[9]   S-THIOLATION OF INDIVIDUAL HUMAN NEUTROPHIL PROTEINS INCLUDING ACTIN BY STIMULATION OF THE RESPIRATORY BURST - EVIDENCE AGAINST A ROLE FOR GLUTATHIONE DISULFIDE [J].
CHAI, YC ;
ASHRAF, SS ;
ROKUTAN, K ;
JOHNSTON, RB ;
THOMAS, JA .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1994, 310 (01) :273-281
[10]   Acute cadmium exposure inactivates thioltransferase (glutaredoxin), inhibits intracellular reduction of protein-glutathionyl-mixed disulfides, and initiates apoptosis [J].
Chrestensen, CA ;
Starke, DW ;
Mieyal, JJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (34) :26556-26565