Relationship between membrane phosphatidylinositol-4,5-bisphosphate and receptor-mediated inhibition of native neuronal M channels

被引:143
作者
Winks, JS
Hughes, S
Filippov, AK
Tatulian, L
Abogadie, FC
Brown, DA
Marsh, SJ
机构
[1] UCL, Dept Pharmacol, London WC1 6BT, England
[2] Pfizer Ltd, Global Res & Dev, Sandwich Labs, Ion Channel Pharmacol Grp, Sandwich CT13 9NJ, Kent, England
基金
英国惠康基金;
关键词
PIP2; M-current; neuronal excitability; G-protein-coupled receptors; PLC; sympathetic neurons;
D O I
10.1523/JNEUROSCI.3231-04.2005
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The relationship between receptor-induced membrane phosphatidylinositol-4'5'-bisphosphate (PIP2) hydrolysis and M-current inhibition was assessed in single-dissociated rat sympathetic neurons by simultaneous or parallel recording of membrane current and membrane-to-cytosol translocation of the fluorescent PIP2/inositol 1,4,5-trisphosphate (IP3)-binding peptide green fluorescent protein-tagged pleckstrin homology domain of phospholipase C (GFP-PLC delta-PH). The muscarinic receptor agonist oxotremorine-M produced parallel time- and concentration-dependent M-current inhibition and GFP-PLC delta-PH translocation; bradykinin also produced parallel time- dependent inhibition and translocation. Phosphatidylinositol-4-phosphate-5-kinase (PI5-K) overexpression reduced both M-current inhibition and GFP-PLC delta-PH translocation by both oxotremorine-M and bradykinin. These effects were partly reversed by wortmannin, which inhibits phosphatidylinositol-4-kinase (PI4-K). PI5-K overexpression also reduced the inhibitory action of oxotremorine-M on PIP2-gated G-protein-gated inward rectifier (Kir3.1/3.2) channels; bradykinin did not inhibit these channels. Overexpression of neuronal calcium sensor-1 protein (NCS-1), which increases PI4-K activity, did not affect responses to oxotremorine-M but reduced both fluorescence translocation and M-current inhibition by bradykinin. Using an intracellular IP3 membrane fluorescence-displacement assay, initial mean concentrations of membrane [PIP2] were estimated at 261 mu M (95% confidence limit; 192-381 mu M), rising to 693 mu M (417-1153 mu M) in neurons overexpressing PI5-K. Changes in membrane [PIP2] during application of oxotremorine-M were calculated from fluorescence data. The results, taken in conjunction with previous data for KCNQ2/3 (Kv7.2/Kv7.3) channel gating by PIP2 (Zhang et al., 2003), accorded with the hypothesis that the inhibitory action of oxotremorine-M on M current resulted from depletion of PIP2. The effects of bradykinin require additional components of action, which might involve IP3-induced Ca2+ release and consequent M-channel inhibition (as proposed previously) and stimulation of PIP2 synthesis by Ca2+-dependent activation of NCS-1.
引用
收藏
页码:3400 / 3413
页数:14
相关论文
共 64 条
[1]  
AGARD DA, 1989, METHOD CELL BIOL, V30, P353
[2]   Transfection of a phosphatidyl-4-phosphate 5-kinase gene into rat atrial myocytes removes inhibition of GIRK current by endothelin and α-adrenergic agonists [J].
Bender, K ;
Wellner-Kienitz, MC ;
Pott, L .
FEBS LETTERS, 2002, 529 (2-3) :356-360
[3]   CHARACTERIZATION OF MUSCARINIC RECEPTOR SUBTYPES INHIBITING CA2+ CURRENT AND M-CURRENT IN RAT SYMPATHETIC NEURONS [J].
BERNHEIM, L ;
MATHIE, A ;
HILLE, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (20) :9544-9548
[4]  
Bofill-Cardona E, 2000, MOL PHARMACOL, V57, P1165
[5]  
Brown D A, 1988, Ion Channels, V1, P55
[6]   MUSCARINIC SUPPRESSION OF A NOVEL VOLTAGE-SENSITIVE K+ CURRENT IN A VERTEBRATE NEURON [J].
BROWN, DA ;
ADAMS, PR .
NATURE, 1980, 283 (5748) :673-676
[7]   Neuronal Ca2+-sensor proteins:: multitalented regulators of neuronal function [J].
Burgoyne, RD ;
O'Callaghan, DW ;
Hasdemir, B ;
Haynes, LP ;
Tepikin, AV .
TRENDS IN NEUROSCIENCES, 2004, 27 (04) :203-209
[8]   Photochemical and pharmacological evaluation of 7-nitroindolinyl-and 4-methoxy-7-nitroindolinyl-amino acids as novel, fast caged neurotransmitters [J].
Canepari, M ;
Nelson, L ;
Papageorgiou, G ;
Corrie, JET ;
Ogden, D .
JOURNAL OF NEUROSCIENCE METHODS, 2001, 112 (01) :29-42
[9]  
CASTLEMAN K. R., 1996, Digital image processing
[10]   Bradykinin inhibits M current via phospholipase C and Ca2+ release from IP3-sensitive Ca2+ stores in rat sympathetic neurons [J].
Cruzblanca, H ;
Koh, DS ;
Hille, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (12) :7151-7156