Aberrant signal peptide cleavage of collagen X in Schmid metaphyseal chondrodysplasia - Implications for the molecular basis of the disease

被引:41
作者
Chan, D [1 ]
Ho, MSP [1 ]
Cheah, KSE [1 ]
机构
[1] Univ Hong Kong, Dept Biochem, Hong Kong, Hong Kong, Peoples R China
关键词
D O I
10.1074/jbc.M003361200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Schmid metaphyseal chondrodysplasia results from mutations in the collagen X (COL10A1) gene. With the exception of two cases, the known mutations are clustered in the C-terminal nonhelical (NC1) domain of the collagen X. In vitro and cell culture studies have shown that the NC1 mutations result in impaired collagen X trimer assembly and secretion. In the two other cases, missense mutations that alter Gly(18) at the -1 position of the putative signal peptide cleavage site were identified (Ikegawa, S., Nakamura, K,, Nagano, A., Haga, N,, and Nakamura, Y. (1997) Hum, Mutat. 9, 131-135). To study their impact on collagen X biosynthesis using in vitro cell-free translation in the presence of microsomes, and cell transfection assays, these two mutations were created in COL10A1 by site-directed mutagenesis. The data suggest that translocation of the mutant pre-alpha1(X) chains into the microsomes is not affected, but cleavage of the signal peptide is inhibited, and the mutant chains remain anchored to the membrane of microsomes, Cell-free translation and transfection studies in cells showed that the mutant chains associate into trimers but cannot form a triple helix, The combined effect of both the lack of signal peptide cleavage and helical configuration is impaired secretion. Thus, despite the different nature of the NC1 and signal peptide mutations in collagen X, both result in impaired collagen X secretion, probably followed by intracellular retention and degradation of mutant chains, and causing the Schmid metaphyseal chandrodysplasia phenotype.
引用
收藏
页码:7992 / 7997
页数:6
相关论文
共 25 条
[1]   COLLAGEN DEFECTS IN LETHAL PERINATAL OSTEOGENESIS IMPERFECTA [J].
BATEMAN, JF ;
CHAN, D ;
MASCARA, T ;
ROGERS, JG ;
COLE, WG .
BIOCHEMICAL JOURNAL, 1986, 240 (03) :699-708
[2]   Mechanism of endoplasmic reticulum retention of mutant vasopressin precursor caused by a signal peptide truncation associated with diabetes insipidus [J].
Beuret, N ;
Rutishauser, J ;
Bider, MD ;
Spiess, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (27) :18965-18972
[3]   THE FIBRILLAR COLLAGENS, COLLAGEN-VIII, COLLAGEN-X AND THE C1Q COMPLEMENT PROTEINS SHARE A SIMILAR DOMAIN IN THEIR C-TERMINAL NONCOLLAGENOUS REGIONS [J].
BRASS, A ;
KADLER, KE ;
THOMAS, JT ;
GRANT, ME ;
BOOTHANDFORD, RP .
FEBS LETTERS, 1992, 303 (2-3) :126-128
[4]   Phenotypic and biochemical consequences of collagen X mutations in mice and humans [J].
Chan, D ;
Jacenko, O .
MATRIX BIOLOGY, 1998, 17 (03) :169-184
[5]   TYPE-X COLLAGEN MULTIMER ASSEMBLY IN-VITRO IS PREVENTED BY A GLY(618) TO VAL MUTATION IN THE ALPHA-1(X) NC1 DOMAIN RESULTING IN SCHMID METAPHYSEAL CHONDRODYSPLASIA [J].
CHAN, D ;
COLE, WG ;
ROGERS, JG ;
BATEMAN, JF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (09) :4558-4562
[6]   Site-directed mutagenesis of human type X collagen - Expression of alpha 1(X) NC1, NC2, and helical mutations in vitro and in transfected cells [J].
Chan, D ;
Weng, YM ;
Hocking, AM ;
Golub, S ;
McQuillan, DJ ;
Bateman, JF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (23) :13566-13572
[7]   Interaction of collagen α1(X) containing engineered NC1 mutations with normal α1(X) in vitro -: Implications for the molecular basis of schmid metaphyseal chondrodysplasia [J].
Chan, D ;
Freddi, S ;
Weng, YM ;
Bateman, JF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (19) :13091-13097
[8]   A nonsense mutation in the carboxyl-terminal domain of type X collagen causes haploinsufficiency in Schmid metaphyseal chondrodysplasia [J].
Chan, D ;
Weng, YM ;
Graham, HK ;
Sillence, DO ;
Bateman, JF .
JOURNAL OF CLINICAL INVESTIGATION, 1998, 101 (07) :1490-1499
[9]   Proteasomal degradation of unassembled mutant type I collagen pro-α1(I) chains [J].
Fitzgerald, J ;
Lamandé, SR ;
Bateman, JF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (39) :27392-27398
[10]   EUKARYOTIC TRANSIENT-EXPRESSION SYSTEM BASED ON RECOMBINANT VACCINIA VIRUS THAT SYNTHESIZES BACTERIOPHAGE-T7 RNA-POLYMERASE [J].
FUERST, TR ;
NILES, EG ;
STUDIER, FW ;
MOSS, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (21) :8122-8126