Transient 2D IR spectroscopy of ubiquitin unfolding dynamics

被引:149
作者
Chung, Hoi Sung [1 ]
Ganim, Ziad [1 ]
Jones, Kevin C. [1 ]
Tokmakoff, Andrei [1 ]
机构
[1] MIT, Dept Chem, Cambridge, MA 02139 USA
关键词
molecular dynamics; protein folding; temperature jump; time-resolved spectroscopy;
D O I
10.1073/pnas.0700959104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Transient two-dimensional infrared (2D IR) spectroscopy is used as a probe of protein unfolding dynamics in a direct comparison of fast unfolding experiments with molecular dynamics simulations. In the experiments, the unfolding of ubiquitin is initiated by a laser temperature jump, and protein structural evolution from nanoseconds to milliseconds is probed using amide I 2D IR spectroscopy. The temperature jump prepares a subensemble near the unfolding transition state, leading to quasi-barrierless unfolding (the "burst phase") before the millisecond activated unfolding kinetics. The burst phase unfolding of ubiquitin is characterized by a loss of the coupling between vibrations of the beta-sheet, a process that manifests itself in the 2D IR spectrum as a frequency blue-shift and intensity decrease of the diagonal and cross-peaks of the sheet's two IR active modes. As the sheet unfolds, increased fluctuations and solvent exposure of the beta-sheet amide groups are also characterized by increases in homogeneous linewidth. Experimental spectra are compared with 2D IR spectra calculated from the time-evolving structures in a molecular dynamics simulation of ubiquitin unfolding. Unfolding is described as a sequential unfolding of strands in ubiquitin's beta-sheet, using two collective coordinates of the sheet: (i) the native interstrand contacts between adjacent A-strands I and II and (ii) the remaining beta-strand contacts within the sheet. The methods used illustrate the general principles by which 2D IR spectroscopy can be used for detailed dynamical comparisons of experiment and simulation.
引用
收藏
页码:14237 / 14242
页数:6
相关论文
共 50 条
[1]  
Alonso DOV, 1998, PROTEIN SCI, V7, P860
[2]   MOLECULAR-DYNAMICS SIMULATIONS OF PROTEIN UNFOLDING AND LIMITED REFOLDING - CHARACTERIZATION OF PARTIALLY UNFOLDED STATES OF UBIQUITIN IN 60-PERCENT METHANOL AND IN WATER [J].
ALONSO, DOV ;
DAGGETT, V .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 247 (03) :501-520
[3]   What vibrations tell us about proteins [J].
Barth, A ;
Zscherp, C .
QUARTERLY REVIEWS OF BIOPHYSICS, 2002, 35 (04) :369-430
[4]   EARLY HYDROGEN-BONDING EVENTS IN THE FOLDING REACTION OF UBIQUITIN [J].
BRIGGS, MS ;
RODER, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (06) :2017-2021
[5]   Fast events in protein folding: The time evolution of primary processes [J].
Callender, RH ;
Dyer, RB ;
Gilmanshin, R ;
Woodruff, WH .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1998, 49 :173-202
[6]   Signatures of β-sheet secondary structures in linear and two-dimensional infrared spectroscopy [J].
Cheatum, CM ;
Tokmakoff, A ;
Knoester, J .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (17) :8201-8215
[7]   Visualization and characterization of the infrared active amide I vibrations of proteins [J].
Chung, HS ;
Tokmakoff, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (06) :2888-2898
[8]   Conformational changes during the nanosecond-to-millisecond unfolding of ubiquitin [J].
Chung, HS ;
Khalil, M ;
Smith, AW ;
Ganim, Z ;
Tokmakoff, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (03) :612-617
[9]   Nonlinear infrared spectroscopy of protein conformational change during thermal unfolding [J].
Chung, HS ;
Khalil, M ;
Tokmakoff, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (39) :15332-15342
[10]  
CHUNG HS, 2007, IN PRESS REV SCI INS