Microlocal filtering with multiwavelets

被引:6
作者
Ashino, R [1 ]
Heil, C
Nagase, M
Vaillancourt, R
机构
[1] Osaka Kyoiku Univ, Div Math Sci, Osaka 582, Japan
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[3] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 560, Japan
[4] Univ Ottawa, Dept Math & Stat, Ottawa, ON K1N 6N5, Canada
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
microlocal analysis; filter; multiwavelet; analytic representation;
D O I
10.1016/S0898-1221(01)85011-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Hyperfunctions in R-n are intuitively considered as sums of boundary values of holomorphic functions defined in infinitesimal wedges' in C-n. Orthonormal multiwavelets, which are a generalization of orthonormal single wavelets, generate a multiresolution analysis by means of several scaling functions. Microlocal analysis is briefly reviewed and a multiwavelet system adapted to microlocal filtering is proposed. A rough estimate of the microlocal content of functions or signals is obtained from their multiwavelet expansions. A fast algorithm for multiwavelet microlocal filtering is presented and several numerical examples are considered. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:111 / 133
页数:23
相关论文
共 16 条
[1]   A construction of multiwavelets [J].
Ashino, R ;
Nagase, M ;
Vaillancourt, R .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 32 (03) :23-37
[2]   ENTROPY-BASED ALGORITHMS FOR BEST BASIS SELECTION [J].
COIFMAN, RR ;
WICKERHAUSER, MV .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (02) :713-718
[3]   PAINLESS NONORTHOGONAL EXPANSIONS [J].
DAUBECHIES, I ;
GROSSMANN, A ;
MEYER, Y .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (05) :1271-1283
[4]  
DAUBECHIES I, 1992, CBMS NSF REG C SER A, V61
[5]   CONTINUOUS AND DISCRETE WAVELET TRANSFORMS [J].
HEIL, CE ;
WALNUT, DF .
SIAM REVIEW, 1989, 31 (04) :628-666
[6]  
Hernandez E., 1996, 1 COURSE WAVELETS
[7]  
Hernandez E., 1996, J. Fourier Anal. Appl., V2, P329
[8]  
Hubbard B.B., 1998, WORLD ACCORDING WAVE
[9]  
Kaneko A., 1988, MATH APPL JAPANESE S
[10]  
KANEKO A, 1992, LINEAR PARTIAL DIFFE