Functional localization of cannabinoid receptors and endogenous cannabinoid production in distinct neuron populations of the hippocampus

被引:61
作者
Hoffman, AF
Riegel, AC
Lupica, CR
机构
[1] NIDA, Cellular Neurobiol Res Branch, NIH, US Dept Hlth & Human Serv, Baltimore, MD 21224 USA
[2] NIDA, Cellular Neurophysiol Unit, NIH, US Dept Hlth & Human Serv, Baltimore, MD 21224 USA
关键词
electrophysiology; GABA; glutamate; interneurons; marijuana; rat;
D O I
10.1046/j.1460-9568.2003.02773.x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The possible localization of cannabinoid (CB) receptors to glutamatergic and GABAergic synaptic terminals impinging upon GABAergic interneurons in the CA1 region of the rat hippocampus was examined using the electrophysiological measurement of neurotransmitter release in brain slices. Whereas activation of cannabinoid receptors via the application of the cannabinoid agonist WIN55,212-2 significantly and dose-dependently reduced evoked IPSCs recorded from interneurons possessing somata located in the stratum radiatum (S.R.) and stratum oriens (S.O.) lamellae, evoked glutamatergic EPSCs were unaffected in both neuronal populations. However, in agreement with previous reports, WIN55,212-2 significantly reduced EPSCs recorded from CA1 pyramidal neurons. Additional experiments confirmed that the effects of WIN55,212-2 on IPSCs were presynaptic and that they could be blocked by the CB1 receptor antagonist SR141716A. The involvement of endogenous cannabinoids in the presynaptic inhibition of GABA release was also examined in the interneurons and pyramidal cells using a depolarization-induced suppression of inhibition (DSI) paradigm. DSI was observed in CA1 pyramidal neurons under control conditions, and its incidence was greatly increased by the cholinergic agonist carbachol. However, DSI was not observed in the S.R. or S.O. interneuron populations, in either the presence or absence of carbachol. Whereas DSI was not present in these interneurons, the inhibitory inputs to these cells were modulated by the synthetic cannabinoid WIN55,212-2. These data support the hypothesis that cannabinoid receptors are located on inhibitory, but not excitatory, axon terminals impinging upon hippocampal interneurons, and that CA1 pyramidal neurons, and not interneurons, are capable of generating endogenous cannabinoids during prolonged states of depolarization.
引用
收藏
页码:524 / 534
页数:11
相关论文
共 58 条
[1]   NEUROBIOLOGY OF MARIJUANA ABUSE [J].
ABOOD, ME ;
MARTIN, BR .
TRENDS IN PHARMACOLOGICAL SCIENCES, 1992, 13 (05) :201-206
[2]   Correlated morphological and neurochemical features identify different subsets of vasoactive intestinal polypeptide-immunoreactive interneurons in rat hippocampus [J].
Acsady, L ;
Arabadzisz, D ;
Freund, TF .
NEUROSCIENCE, 1996, 73 (02) :299-315
[3]   Different populations of vasoactive intestinal polypeptide-immunoreactive interneurons are specialized to control pyramidal cells or interneurons in the hippocampus [J].
Acsady, L ;
Gorcs, TJ ;
Freund, TF .
NEUROSCIENCE, 1996, 73 (02) :317-334
[4]   The effects of cannabinoids on the brain [J].
Ameri, A .
PROGRESS IN NEUROBIOLOGY, 1999, 58 (04) :315-348
[5]   Effects of the endogeneous cannabinoid, anandamide, on neuronal activity in rat hippocampal slices [J].
Ameri, A ;
Wilhelm, A ;
Simmet, T .
BRITISH JOURNAL OF PHARMACOLOGY, 1999, 126 (08) :1831-1839
[6]   Enkephalin-containing interneurons are specialized to innervate other interneurons in the hippocampal CA1 region of the rat and guinea-pig [J].
Blasco-Ibáñez, JM ;
Martínez-Guijarro, FJ ;
Freund, TF .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1998, 10 (05) :1784-1795
[7]   SYNAPTIC INPUT OF HORIZONTAL INTERNEURONS IN STRATUM-ORIENS OF THE HIPPOCAMPAL CA1 SUBFIELD - STRUCTURAL BASIS OF FEEDBACK ACTIVATION [J].
BLASCOIBANEZ, JM ;
FREUND, TF .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1995, 7 (10) :2170-2180
[8]   Endocannabinoids facilitate the induction of LTP in the hippocampus [J].
Carlson, G ;
Wang, Y ;
Alger, BE .
NATURE NEUROSCIENCE, 2002, 5 (08) :723-724
[9]  
Chrobak JJ, 1998, J NEUROSCI, V18, P388
[10]   SYNCHRONIZATION OF NEURONAL-ACTIVITY IN HIPPOCAMPUS BY INDIVIDUAL GABAERGIC INTERNEURONS [J].
COBB, SR ;
BUHL, EH ;
HALASY, K ;
PAULSEN, O ;
SOMOGYI, P .
NATURE, 1995, 378 (6552) :75-78