The oligomeric structure of GroEL/GroES is required for biologically significant chaperonin function in protein folding

被引:63
作者
Weber, F
Keppel, F
Georgopoulos, C
Hayer-Hartl, MK
Hartl, FU
机构
[1] Max Planck Inst Biochem, D-82152 Martinsried, Germany
[2] Ctr Med Univ Geneva, Dept Biochim Med, CH-1211 Geneva, Switzerland
关键词
D O I
10.1038/2952
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Two models are being considered for the mechanism of chaperonin-assisted protein folding in E. coli: (i) GroEL/GroES act primarily by enclosing substrate polypeptide in a folding cage in which aggregation is prevented during folding. (ii) GroEL mediates the repetitive unfolding of misfolded polypeptides, returning them onto a productive folding track. Both models are not mutually exclusive, but studies with the polypeptide-binding domain of GroEL have suggested that unfolding is the primary mechanism, enclosure being unnecessary. Here we investigate the capacity of the isolated apical polypeptide-binding domain to functionally replace the complete GroEL/GroES system. We show that the apical domain binds aggregation-sensitive polypeptides but cannot significantly assist their refolding in vitro and fails to replace the groEL gene or to complement defects of groEL mutants in vivo. A single-ring version of GroEL cannot substitute for GroEL. These results strongly support the view that sequestration of aggregation-prone intermediates in a folding cage is an important element of the chaperonin mechanism.
引用
收藏
页码:977 / 985
页数:9
相关论文
共 59 条
[1]   Refolding chromatography with immobilized mini-chaperones [J].
Altamirano, MM ;
Golbik, R ;
Zahn, R ;
Buckle, AM ;
Fersht, AR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (08) :3576-3578
[2]   THE HEAT-SHOCK-REGULATED GRPE GENE OF ESCHERICHIA-COLI IS REQUIRED FOR BACTERIAL-GROWTH AT ALL TEMPERATURES BUT IS DISPENSABLE IN CERTAIN MUTANT BACKGROUNDS [J].
ANG, D ;
GEORGOPOULOS, C .
JOURNAL OF BACTERIOLOGY, 1989, 171 (05) :2748-2755
[3]   The 2.4 angstrom crystal structure of the bacterial chaperonin GroEL complexed with ATP gamma S [J].
Boisvert, DC ;
Wang, JM ;
Otwinowski, Z ;
Horwich, AL ;
Sigler, PB .
NATURE STRUCTURAL BIOLOGY, 1996, 3 (02) :170-177
[4]   THE CRYSTAL-STRUCTURE OF THE BACTERIAL CHAPERONIN GROEL AT 2.8-ANGSTROM [J].
BRAIG, K ;
OTWINOWSKI, Z ;
HEGDE, R ;
BOISVERT, DC ;
JOACHIMIAK, A ;
HORWICH, AL ;
SIGLER, PB .
NATURE, 1994, 371 (6498) :578-586
[5]   GROE FACILITATES REFOLDING OF CITRATE SYNTHASE BY SUPPRESSING AGGREGATION [J].
BUCHNER, J ;
SCHMIDT, M ;
FUCHS, M ;
JAENICKE, R ;
RUDOLPH, R ;
SCHMID, FX ;
KIEFHABER, T .
BIOCHEMISTRY, 1991, 30 (06) :1586-1591
[6]   A structural model for GroEL-polypeptide recognition [J].
Buckle, AM ;
Zahn, R ;
Fersht, AR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (08) :3571-3575
[7]   The Hsp70 and Hsp60 chaperone machines [J].
Bukau, B ;
Horwich, AL .
CELL, 1998, 92 (03) :351-366
[8]   ANALYSIS OF GENE-CONTROL SIGNALS BY DNA-FUSION AND CLONING IN ESCHERICHIA-COLI [J].
CASADABAN, MJ ;
COHEN, SN .
JOURNAL OF MOLECULAR BIOLOGY, 1980, 138 (02) :179-207
[9]   LOCATION OF A FOLDING PROTEIN AND SHAPE CHANGES IN GROEL-GROES COMPLEXES IMAGED BY CRYOELECTRON MICROSCOPY [J].
CHEN, S ;
ROSEMAN, AM ;
HUNTER, AS ;
WOOD, SP ;
BURSTON, SG ;
RANSON, NA ;
CLARKE, AR ;
SAIBIL, HR .
NATURE, 1994, 371 (6494) :261-264
[10]  
Clark JE, 1996, J DRUG DEV CLIN PR, V8, P35