β-Amylase-Like Proteins Function as Transcription Factors in Arabidopsis, Controlling Shoot Growth and Development

被引:85
作者
Reinhold, Heike [1 ]
Soyk, Sebastian [1 ]
Simkova, Klara [1 ]
Hostettler, Carmen [1 ]
Marafino, John [2 ]
Mainiero, Samantha [2 ]
Vaughan, Cara K. [3 ]
Monroe, Jonathan D. [2 ]
Zeeman, Samuel C. [1 ]
机构
[1] ETH, Dept Biol, CH-8092 Zurich, Switzerland
[2] James Madison Univ, Dept Biol, Harrisonburg, VA 22807 USA
[3] Univ London Birkbeck Coll, Sch Crystallog, London WC1E 7HX, England
基金
瑞士国家科学基金会;
关键词
BRASSINOSTEROID-REGULATED GENES; STARCH BREAKDOWN; EXPRESSION; TRANSFORMATION; METABOLISM; ALIGNMENT; UPSTREAM; GENOMICS; FEEDBACK; VECTORS;
D O I
10.1105/tpc.110.081950
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Plants contain beta-amylase-like proteins (BAMs; enzymes usually associated with starch breakdown) present in the nucleus rather than targeted to the chloroplast. They possess BRASSINAZOLE RESISTANT1 (BZR1)-type DNA binding domains-also found in transcription factors mediating brassinosteroid (BR) responses. The two Arabidopsis thaliana BZR1-BAM proteins (BAM7 and BAM8) bind a cis-regulatory element that both contains a G box and resembles a BR-responsive element. In protoplast transactivation assays, these BZR1-BAMs activate gene expression. Structural modeling suggests that the BAM domain's glucan binding cleft is intact, but the recombinant proteins are at least 1000 times less active than chloroplastic beta-amylases. Deregulation of BZR1-BAMs (the bam7bam8 double mutant and BAM8-overexpressing plants) causes altered leaf growth and development. Of the genes upregulated in plants overexpressing BAM8 and downregulated in bam7bam8 plants, many carry the cis-regulatory element in their promoters. Many genes that respond to BRs are inversely regulated by BZR1-BAMs. We propose a role for BZR1-BAMs in controlling plant growth and development through crosstalk with BR signaling. Furthermore, we speculate that BZR1-BAMs may transmit metabolic signals by binding a ligand in their BAM domain, although diurnal changes in the concentration of maltose, a candidate ligand produced by chloroplastic b-amylases, do not influence their transcription factor function.
引用
收藏
页码:1391 / 1403
页数:13
相关论文
共 51 条
[1]   A central integrator of transcription networks in plant stress and energy signalling [J].
Baena-Gonzalez, Elena ;
Rolland, Filip ;
Thevelein, Johan M. ;
Sheen, Jen .
NATURE, 2007, 448 (7156) :938-U10
[2]   MEME: discovering and analyzing DNA and protein sequence motifs [J].
Bailey, Timothy L. ;
Williams, Nadya ;
Misleh, Chris ;
Li, Wilfred W. .
NUCLEIC ACIDS RESEARCH, 2006, 34 :W369-W373
[3]   Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis [J].
Bläsing, OE ;
Gibon, Y ;
Günther, M ;
Höhne, M ;
Morcuende, R ;
Osuna, D ;
Thimm, O ;
Usadel, B ;
Scheible, WR ;
Stitt, M .
PLANT CELL, 2005, 17 (12) :3257-3281
[4]   A cytosolic glucosyltransferase is required for conversion of starch to sucrose in Arabidopsis leaves at night [J].
Chia, T ;
Thorneycroft, D ;
Chapple, A ;
Messerli, G ;
Chen, J ;
Zeeman, SC ;
Smith, SM ;
Smith, AM .
PLANT JOURNAL, 2004, 37 (06) :853-863
[5]   Regulatory functions of nuclear hexokinase1 complex in glucose signaling [J].
Cho, Young-Hee ;
Yoo, Sang-Dong ;
Sheen, Jen .
CELL, 2006, 127 (03) :579-589
[6]  
CHORY J, 1991, PLANT CELL, V3, P445, DOI 10.1105/tpc.3.5.445
[7]   Floral spray transformation can efficiently generate Arabidopsis transgenic plants [J].
Chung, MH ;
Chen, MK ;
Pan, SM .
TRANSGENIC RESEARCH, 2000, 9 (06) :471-476
[8]   The Jalview Java']Java alignment editor [J].
Clamp, M ;
Cuff, J ;
Searle, SM ;
Barton, GJ .
BIOINFORMATICS, 2004, 20 (03) :426-427
[9]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[10]   A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development [J].
Clouse, SD ;
Langford, M ;
McMorris, TC .
PLANT PHYSIOLOGY, 1996, 111 (03) :671-678