Jump diffusion approximation for a Markovian transport model
被引:2
作者:
Dabrowski, AR
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ottawa, Dept Math, Ottawa, ON K1N 6N5, CanadaUniv Ottawa, Dept Math, Ottawa, ON K1N 6N5, Canada
Dabrowski, AR
[1
]
Dehling, H
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ottawa, Dept Math, Ottawa, ON K1N 6N5, CanadaUniv Ottawa, Dept Math, Ottawa, ON K1N 6N5, Canada
Dehling, H
[1
]
机构:
[1] Univ Ottawa, Dept Math, Ottawa, ON K1N 6N5, Canada
来源:
ASYMPTOTIC METHODS IN PROBABILITY AND STATISTICS: A VOLUME IN HONOUR OF MIKLOS CSORGO
|
1998年
关键词:
D O I:
10.1016/B978-044450083-0/50008-3
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
In this note we analyze a Markovian model for particle transport in a fluidized bed chemical reactor, and prove a diffusion approximation. The transport model is basically a birth-death Markov process with reflection at the origin and occasional jumps to the origin, modelling transport in the wakes of rising fluidization bubbles. We establish here a strong approximation by a jump diffusion process with trajectory-dependent jump times.