The presence of CYP79 homologues in glucosinolate-producing plants shows evolutionary conservation of the enzymes in the conversion of amino acid to aldoxime in the biosynthesis of cyanogenic glucosides and glucosinolates

被引:97
作者
Bak, S [1 ]
Nielsen, HL [1 ]
Halkier, BA [1 ]
机构
[1] Royal Vet & Agr Univ, Dept Plant Biol, Plant Biochem Lab, DK-1871 Frederiksberg C, Denmark
关键词
glucosinolates; cyanogenic glucosides; biosynthesis; cytochrome P450; evolution; Capparales;
D O I
10.1023/A:1006064202774
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A cDNA encoding CYP79B1 has been isolated from Sinapis alba. CYP79B1 from S. alba shows 54% sequence identity and 73% similarity to sorghum CYP79A1 and 95% sequence identity to the Arabidopsis T42902, assigned CYP79B2. The high identity and similarity to sorghum CYP79A1, which catalyses the conversion of tyrosine to p-hydroxyphenylacetaldoxime in the biosynthesis of the cyanogenic glucoside dhurrin, suggests that CYP79B1 similarly catalyses the conversion of amino acid(s) to aldoxime(s) in the biosynthesis of glucosinolates, Within the highly conserved 'PERF' and the heme-binding region of A-type cytochromes, the CYP79 family has unique substitutions that define the family-specific consensus sequences of FXP(E/D)RH and SFSTG(WR)RGC(A/I)A, respectively Sequence analysis of PCR products generated with CYP79B subfamily-specific primers identified CYP79B homologues in Tropaeolum majus, Carica papaya, Arabidopsis, Brassica napus and S. alba. The five glucosinolate-producing plants identified a CYP79B amino acid consensus sequence KPERHLNECSEVTLTENDLRFISFSTGKRGC. The unique substitutions in the 'PERF' and the heme-binding domain and the high sequence identity and similarity of CYP79B1, CYP79B2 and CYP79A1, together with the isolation of CYP79B homologues in the distantly related Tropaeolaceae. Caricaceae and Brassicaceae within the Capparales order, show that the initial part of the biosynthetic pathway of glucosinolates and cyanogenic glucosides is catalysed by evolutionarily conserved cytochromes P450. This confirms that the appearance of glucosinolates in Capparales is based on a cyanogen 'predisposition'. Identification of CYP79 homologues in glucosinolate-producing plants provides an important tool for tissue-specific regulation of the level of glucosinolates to improve nutritional value and pest resistance.
引用
收藏
页码:725 / 734
页数:10
相关论文
共 32 条
[1]   Cloning and expression in Escherichia coli of the obtusifoliol 14 alpha-demethylase of Sorghum bicolor (L) Moench, a cytochrome P450 orthologous to the sterol 14 alpha-demethylases (CYP51) from fungi and mammals [J].
Bak, S ;
Kahn, RA ;
Olsen, CE ;
Halkier, BA .
PLANT JOURNAL, 1997, 11 (02) :191-201
[2]   Cloning of three A-type cytochromes p450, CYP71E1, CYP98, and CYP99 from Sorghum bicolor (L.) Moench by a PCR approach and identification by expression in Escherichia coli of CYP71E1 as a multifunctional cytochrome p450 in the biosynthesis of the cyanogenic glucoside dhurrin [J].
Bak, S ;
Kahn, RA ;
Nielsen, HL ;
Moller, BL ;
Halkier, BA .
PLANT MOLECULAR BIOLOGY, 1998, 36 (03) :393-405
[3]  
Barnes HJ, 1996, METHOD ENZYMOL, V272, P3, DOI 10.1016/S0076-6879(96)72003-7
[4]   EXPRESSION AND ENZYMATIC-ACTIVITY OF RECOMBINANT CYTOCHROME-P450 17-ALPHA-HYDROXYLASE IN ESCHERICHIA-COLI [J].
BARNES, HJ ;
ARLOTTO, MP ;
WATERMAN, MR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (13) :5597-5601
[5]   ALDOXIME-FORMING MICROSOMAL-ENZYME SYSTEMS INVOLVED IN THE BIOSYNTHESIS OF GLUCOSINOLATES IN OILSEED RAPE (BRASSICA-NAPUS) LEAVES [J].
BENNETT, R ;
DONALD, A ;
DAWSON, G ;
HICK, A ;
WALLSGROVE, R .
PLANT PHYSIOLOGY, 1993, 102 (04) :1307-1312
[6]   Distribution and activity of microsomal NADPH-dependent monooxygenases and amino acid decarboxylases in cruciferous and non-cruciferous plants, and their relationship to foliar glucosinolate content [J].
Bennett, RN ;
Kiddle, G ;
Hick, AJ ;
Dawson, GW ;
Wallsgrove, RM .
PLANT CELL AND ENVIRONMENT, 1996, 19 (07) :801-812
[7]   Biosynthesis of benzylglucosinolate, cyanogenic glucosides and phenylpropanoids in Carica papaya [J].
Bennett, RN ;
Kiddle, G ;
Wallsgrove, RM .
PHYTOCHEMISTRY, 1997, 45 (01) :59-66
[8]   Involvement of cytochrome P450 in glucosinolate biosynthesis in white mustard - A biochemical anomaly [J].
Bennett, RN ;
Kiddle, G ;
Wallsgrove, RM .
PLANT PHYSIOLOGY, 1997, 114 (04) :1283-1291
[9]   GLUCOSINOLATE BIOSYNTHESIS - FURTHER CHARACTERIZATION OF THE ALDOXIME FORMING MICROSOMAL MONOOXYGENASES IN OILSEED RAPE LEAVES [J].
BENNETT, RN ;
HICK, AJ ;
DAWSON, GW ;
WALLSGROVE, RM .
PLANT PHYSIOLOGY, 1995, 109 (01) :299-305
[10]  
CONN EE, 1980, SECONDARY PLANT PROD, P461