Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode

被引:682
作者
Bieker, Georg [1 ]
Winter, Martin [1 ]
Bieker, Peter [1 ]
机构
[1] Univ Munster, Inst Phys Chem, MEET Battery Res Ctr, D-48149 Munster, Germany
关键词
SOLID-ELECTROLYTE INTERPHASE; CARBONATE; BATTERY; PERFORMANCE; STABILITY; LIQUID; MECHANISMS; REACTIVITY; MORPHOLOGY; GRAPHITE;
D O I
10.1039/c4cp05865h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This comparative work studies the self-enforcing heterogeneity of lithium deposition and dissolution as the cause for dendrite formation on the lithium metal anode in various liquid organic solvent based electrolytes. In addition, the ongoing lithium corrosion, its rate and thus the passivating quality of the SEI are investigated in self-discharge measurements. The behavior of the lithium anode is characterized in two carbonate-based standard electrolytes, 1 M LiPF6 in EC/DEC (3:7) and 1 M LiPF6 in EC/DMC (1:1), and in two alternative electrolytes 1 M LiPF6 in TEGDME and 1 M LiTFSI in DMSO, which have been proposed in the literature as promising electrolytes for lithium metal batteries, more specifically for lithium/air batteries. As a result, electrolyte decomposition, SEI and dendrite formation at the lithium electrode as well as their mutual influences are understood in the development of overpotentials, surface resistances and lithium electrode surface morphologies in subsequent lithium deposition and dissolution processes. A general model of different stages of these processes could be elaborated.
引用
收藏
页码:8670 / 8679
页数:10
相关论文
共 41 条
[1]   A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions [J].
Aurbach, D ;
Zinigrad, E ;
Cohen, Y ;
Teller, H .
SOLID STATE IONICS, 2002, 148 (3-4) :405-416
[2]   The study of electrolyte solutions based on solvents from the ''glyme'' family (linear polyethers) for secondary Li battery systems [J].
Aurbach, D ;
Granot, E .
ELECTROCHIMICA ACTA, 1997, 42 (04) :697-718
[3]  
Barsoukov E, 2005, IMPEDANCE SPECTROSCOPY: THEORY, EXPERIMENT, AND APPLICATIONS, 2ND EDITION, pXII
[4]   INORGANIC FILM-FORMING ELECTROLYTE ADDITIVES IMPROVING THE CYCLING BEHAVIOR OF METALLIC LITHIUM ELECTRODES AND THE SELF-DISCHARGE OF CARBON LITHIUM ELECTRODES [J].
BESENHARD, JO ;
WAGNER, MW ;
WINTER, M ;
JANNAKOUDAKIS, AD ;
JANNAKOUDAKIS, PD ;
THEODORIDOU, E .
JOURNAL OF POWER SOURCES, 1993, 44 (1-3) :413-420
[5]   Screening for Superoxide Reactivity in Li-O2 Batteries: Effect on Li2O2/LiOH Crystallization [J].
Black, Robert ;
Oh, Si Hyoung ;
Lee, Jin-Hyon ;
Yim, Taeeun ;
Adams, Brian ;
Nazar, Linda F. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (06) :2902-2905
[6]   Dendritic growth mechanisms in lithium/polymer cells [J].
Brissot, C ;
Rosso, M ;
Chazalviel, JN ;
Lascaud, S .
JOURNAL OF POWER SOURCES, 1999, 81 :925-929
[7]   Predicting Solvent Stability in Aprotic Electrolyte Li-Air Batteries: Nucleophilic Substitution by the Superoxide Anion Radical (O2•-) [J].
Bryantsev, Vyacheslav S. ;
Giordani, Vincent ;
Walker, Wesley ;
Blanco, Mario ;
Zecevic, Strahinja ;
Sasaki, Kenji ;
Uddin, Jasim ;
Addison, Dan ;
Chase, Gregory V. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2011, 115 (44) :12399-12409
[8]   Computational Study of the Mechanisms of Superoxide-Induced Decomposition of Organic Carbonate-Based Electrolytes [J].
Bryantsev, Vyacheslav S. ;
Blanco, Mario .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (05) :379-383
[9]   Micromorphological studies of lithium electrodes in alkyl carbonate solutions using in situ atomic force microscopy [J].
Cohen, YS ;
Cohen, Y ;
Aurbach, D .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (51) :12282-12291
[10]   Measurement of the electrochemical oxidation of organic electrolytes used in lithium batteries by microelectrode [J].
Egashira, M ;
Takahashi, H ;
Okada, S ;
Yamaki, J .
JOURNAL OF POWER SOURCES, 2001, 92 (1-2) :267-271