Expressive speech-driven facial animation

被引:101
作者
Cao, Y
Tien, WC
Faloutsos, P
Pighin, F
机构
[1] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
[2] Univ So Calif, ICT, Los Angeles, CA 90089 USA
[3] Univ So Calif, Inst Creat Technol, Marina Del Rey, CA 90292 USA
来源
ACM TRANSACTIONS ON GRAPHICS | 2005年 / 24卷 / 04期
关键词
algorithms; facial animation; lip synching; expression synthesis; independent component analysis;
D O I
10.1145/1095878.1095881
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Speech-driven facial motion synthesis is a well explored research topic. However, little has been done to model expressive visual behavior during speech. We address this issue using a machine learning approach that relies on a database of speech-related high-fidelity facial motions. From this training set, we derive a generative model of expressive facial motion that incorporates emotion control, while maintaining accurate lip-synching. The emotional content of the input speech can be manually specified by the user or automatically extracted from the audio signal using a Support Vector Machine classifier.
引用
收藏
页码:1283 / 1302
页数:20
相关论文
共 44 条
  • [1] Albrecht I, 2002, WSCG'2002, VOLS I AND II, CONFERENCE PROCEEDINGS, P9
  • [2] [Anonymous], DATA STRUCTURES ALGO
  • [3] Brand M, 1999, COMP GRAPH, P21, DOI 10.1145/311535.311537
  • [4] BREGLER C, 1997, SIGGRAPH 97, P353
  • [5] BROOK N, 1994, INT S SPEECH IM PROC
  • [6] Buhmann MD., 2003, C MO AP C M, DOI 10.1017/CBO9780511543241
  • [7] A tutorial on Support Vector Machines for pattern recognition
    Burges, CJC
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) : 121 - 167
  • [8] CAO Y, 2003, P ACM SIGGRAPH EUR S, P225
  • [9] *CARN MELL U SPEEC, FEST SOFTW
  • [10] CASSELL J, 1994, P ACM SIGGRAPH 1994