Thermal emission and absorption of radiation in finite inverted-opal photonic crystals

被引:36
作者
Florescu, M
Lee, H
Stimpson, AJ
Dowling, J
机构
[1] CALTECH, Jet Prop Lab, Quantum Comp Technol Grp, Pasadena, CA 91109 USA
[2] Louisiana State Univ, Hearne Inst Theoret Phys, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[3] Texas A&M Univ, Inst Quantum Studies, Dept Phys, College Stn, TX 77843 USA
来源
PHYSICAL REVIEW A | 2005年 / 72卷 / 03期
关键词
D O I
10.1103/PhysRevA.72.033821
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study theoretically the optical properties of a finite inverted-opal photonic crystal. The light-matter interaction is strongly affected by the presence of the three-dimensional photonic crystal and the alterations of the light emission and absorption processes can be used to suppress or enhance the thermal emissivity and absorptivity of the dielectric structure. We investigate the influence of the absorption present in the system on the relevant band edge frequencies that control the optical response of the photonic crystal. Our study reveals that the absorption processes cause spectral broadening and shifting of the band edge optical resonances, and determine a strong reduction of the photonic band gap spectral range. Using the angular and spectral dependence of the band edge frequencies for stop bands along different directions, we argue that by matching the blackbody emission spectrum peak with a prescribed maximum of the absorption coefficient, it is possible to achieve an angle-sensitive enhancement of the thermal emission/absorption of radiation. This result opens a way to realize a frequency-sensitive and angle-sensitive photonic crystal absorbers/emitters.
引用
收藏
页数:9
相关论文
共 43 条
[1]   Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres [J].
Blanco, A ;
Chomski, E ;
Grabtchak, S ;
Ibisate, M ;
John, S ;
Leonard, SW ;
Lopez, C ;
Meseguer, F ;
Miguez, H ;
Mondia, JP ;
Ozin, GA ;
Toader, O ;
van Driel, HM .
NATURE, 2000, 405 (6785) :437-440
[2]   DEVELOPMENT AND APPLICATIONS OF MATERIALS EXHIBITING PHOTONIC BAND-GAPS - INTRODUCTION [J].
BOWDEN, CM ;
DOWLING, JP ;
EVERITT, HO .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1993, 10 (02) :280-280
[3]   Photonic band gap formation in certain self-organizing systems [J].
Busch, K ;
John, S .
PHYSICAL REVIEW E, 1998, 58 (03) :3896-3908
[4]   A7 STRUCTURE - A FAMILY OF PHOTONIC CRYSTALS [J].
CHAN, CT ;
DATTA, S ;
HO, KM ;
SOUKOULIS, CM .
PHYSICAL REVIEW B, 1994, 50 (03) :1988-1991
[5]   Point defect geometries in inverted opal photonic crystals [J].
Chan, DLC ;
Lidorikis, E ;
Joannopoulos, JD .
PHYSICAL REVIEW E, 2005, 71 (05)
[6]   Modification of Planck blackbody radiation by photonic band-gap structures [J].
Cornelius, CM ;
Dowling, JP .
PHYSICAL REVIEW A, 1999, 59 (06) :4736-4746
[7]   Large omnidirectional band gaps in metallodielectric photonic crystals [J].
Fan, SH ;
Villeneuve, PR ;
Joannopoulos, JD .
PHYSICAL REVIEW B, 1996, 54 (16) :11245-11251
[8]   A dielectric omnidirectional reflector [J].
Fink, Y ;
Winn, JN ;
Fan, SH ;
Chen, CP ;
Michel, J ;
Joannopoulos, JD ;
Thomas, EL .
SCIENCE, 1998, 282 (5394) :1679-1682
[9]   All-metallic three-dimensional photonic crystals with a large infrared bandgap [J].
Fleming, JG ;
Lin, SY ;
El-Kady, I ;
Biswas, R ;
Ho, KM .
NATURE, 2002, 417 (6884) :52-55
[10]   Resonance fluorescence in photonic band gap waveguide architectures: Engineering the vacuum for all-optical switching [J].
Florescu, M ;
John, S .
PHYSICAL REVIEW A, 2004, 69 (05) :053810-1