Focal adhesion kinase signaling regulates cardiogenesis of embryonic stem cells

被引:65
作者
Hakuno, D [1 ]
Takahashi, T [1 ]
Lammerding, J [1 ]
Lee, RT [1 ]
机构
[1] Harvard Univ, Sch Med, Brigham & Womens Hosp, Dept Med,Cardiovasc Div, Cambridge, MA 02139 USA
关键词
D O I
10.1074/jbc.M505575200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The signaling steps that induce cardiac differentiation in embryonic stem (ES) cells are incompletely understood. We examined the effect of adhesion signaling including Src and focal adhesion kinase (FAK) on cardiogenesis in mouse ES cells using alpha-myosin heavy chain promoter-driven enhanced green fluorescent protein or luciferase as reporters. Cardiac transcription factors including Nkx2.5 and Tbx5 mRNA were first expressed at day 4 in hanging drop embryoid bodies, and adhesion of embryoid bodies to surfaces at or before that day strongly inhibited differentiation of ES cells to cardiomyocytes. Since adhesion signaling could suppress cardiogenesis through Src kinases, embryoid bodies were exposed to the small molecule PP2, known as a Src family kinase inhibitor. PP2 during embryoid body adhesion dramatically increased cardiomyocyte differentiation and decreased mRNA expression of neuronal cellular adhesion molecule and alpha-fetoprotein, neuroectodermal, and endodermal markers, respectively. Surprisingly, although there was an interaction between Src and FAK in cardiogenesis, the procardiogenic effect of PP2 appeared incompletely explained by Src kinase inhibition, since another Src family kinase inhibitor, SU6656, failed to induce cardiogenesis. Instead, PP2 specifically inhibited adhesion-induced FAK phosphorylation. In ES cells stably expressing FAK-related nonkinase, which functions as a dominant negative FAK, cell migration from embryoid bodies was inhibited, whereas alpha-myosin heavy chain expression and myosin-stained cardiomyocytes were increased, suggesting that reducing cell motility may contribute to cardiogenesis. These data indicate that FAK is a key regulator of cardiogenesis in mouse ES cells and that FAK signaling within embryoid bodies can direct stem cell lineage commitment.
引用
收藏
页码:39534 / 39544
页数:11
相关论文
共 63 条
[1]   The Src family of tyrosine kinases is important for embryonic stem cell self-renewal [J].
Annerén, C ;
Cowan, CA ;
Melton, DA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (30) :31590-31598
[2]  
Aplin AE, 1998, PHARMACOL REV, V50, P197
[3]   SU6656, a selective Src family kinase inhibitor, used to probe growth factor signaling [J].
Blake, RA ;
Broome, MA ;
Liu, XD ;
Wu, JM ;
Gishizky, M ;
Sun, L ;
Courtneidge, SA .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (23) :9018-9027
[4]   Oncogenic kinase signalling [J].
Blume-Jensen, P ;
Hunter, T .
NATURE, 2001, 411 (6835) :355-365
[5]   Thymosin β4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair [J].
Bock-Marquette, I ;
Saxena, A ;
White, MD ;
DiMaio, JM ;
Srivastava, D .
NATURE, 2004, 432 (7016) :466-472
[6]   Differentiation of pluripotent embryonic stem cells into cardiomyocytes [J].
Boheler, KR ;
Czyz, J ;
Tweedie, D ;
Yang, HT ;
Anisimov, SV ;
Wobus, AM .
CIRCULATION RESEARCH, 2002, 91 (03) :189-201
[7]   A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease [J].
Bruneau, BG ;
Nemer, G ;
Schmitt, JP ;
Charron, F ;
Robitaille, L ;
Caron, S ;
Conner, DA ;
Gessler, M ;
Nemer, M ;
Seidman, CE ;
Seidman, JG .
CELL, 2001, 106 (06) :709-721
[8]   Mutation in myosin heavy chain 6 causes atrial septal defect [J].
Ching, YH ;
Ghosh, TK ;
Cross, SJ ;
Packham, EA ;
Honeyman, L ;
Loughna, S ;
Robinson, TE ;
Dearlove, AM ;
Ribas, G ;
Bonser, AJ ;
Thomas, NR ;
Scotter, AJ ;
Caves, LSD ;
Tyrrell, GP ;
Newbury-Ecob, RA ;
Munnich, A ;
Bonnet, D ;
Brook, JD .
NATURE GENETICS, 2005, 37 (04) :423-428
[9]   5-azacytidine induces cardiac differentiation of P19 embryonic stem cells [J].
Choi, SC ;
Yoon, J ;
Shim, WJ ;
Ro, YM ;
Lim, DS .
EXPERIMENTAL AND MOLECULAR MEDICINE, 2004, 36 (06) :515-523
[10]   Embryonic stem cell differentiation: The role of extracellular factors [J].
Czyz, J ;
Wobus, AM .
DIFFERENTIATION, 2001, 68 (4-5) :167-174