Polyamines: essential factors for growth and survival

被引:656
作者
Kusano, T. [1 ]
Berberich, T. [1 ]
Tateda, C. [1 ]
Takahashi, Y. [1 ]
机构
[1] Tohoku Univ, Grad Sch Life Sci, Aoba Ku, Sendai, Miyagi 9808577, Japan
基金
日本学术振兴会;
关键词
polyamine; metabolism; homeostasis; ion channel; growth; survival;
D O I
10.1007/s00425-008-0772-7
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Polyamines are low molecular weight, aliphatic polycations found in the cells of all living organisms. Due to their positive charges, polyamines bind to macromolecules such as DNA, RNA, and proteins. They are involved in diverse processes, including regulation of gene expression, translation, cell proliferation, modulation of cell signalling, and membrane stabilization. They also modulate the activities of certain sets of ion channels. Because of these multifaceted functions, the homeostasis of polyamines is crucial and is ensured through regulation of biosynthesis, catabolism, and transport. Through isolation of the genes involved in plant polyamine biosynthesis and loss-of-function experiments on the corresponding genes, their essentiality for growth is reconfirmed. Polyamines are also involved in stress responses and diseases in plants, indicating their importance for plant survival. This review summarizes the recent advances in polyamine research in the field of plant science compared with the knowledge obtained in microorganisms and animal systems.
引用
收藏
页码:367 / 381
页数:15
相关论文
共 186 条
[1]   Involvement of polyamines in plant response to abiotic stress [J].
Alcazar, Ruben ;
Marco, Francisco ;
Cuevas, Juan C. ;
Patron, Macarena ;
Ferrando, Alejandro ;
Carrasco, Pedro ;
Tiburcio, Antonio F. ;
Altabella, Teresa .
BIOTECHNOLOGY LETTERS, 2006, 28 (23) :1867-1876
[2]   Control of ionic currents in guard cell vacuoles by cytosolic and luminal calcium [J].
Allen, GJ ;
Sanders, D .
PLANT JOURNAL, 1996, 10 (06) :1055-1069
[3]   The role of the mitochondrion in plant responses to biotic stress [J].
Amirsadeghi, Sasan ;
Robson, Christine A. ;
Vanlerberghe, Greg C. .
PHYSIOLOGIA PLANTARUM, 2007, 129 (01) :253-266
[4]   Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants [J].
Bagni, N ;
Tassoni, A .
AMINO ACIDS, 2001, 20 (03) :301-317
[5]   ANALYSIS OF A CDNA-ENCODING ARGININE DECARBOXYLASE FROM OAT REVEALS SIMILARITY TO THE ESCHERICHIA-COLI ARGININE DECARBOXYLASE AND EVIDENCE OF PROTEIN PROCESSING [J].
BELL, E ;
MALMBERG, RL .
MOLECULAR & GENERAL GENETICS, 1990, 224 (03) :431-436
[6]   Glypican-1 is a vehicle for polyamine uptake in mammalian cells -: A pivotal role for nitrosothiol-derived nitric oxide [J].
Belting, M ;
Mani, K ;
Jönsson, M ;
Cheng, F ;
Sandgren, S ;
Jonsson, S ;
Ding, K ;
Delcros, JG ;
Fransson, LÅ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (47) :47181-47189
[7]  
Bolenius F.N., 1981, INT J BIOCHEM, V13, P287
[8]   Polyamines and environmental challenges: recent development [J].
Bouchereau, A ;
Aziz, A ;
Larher, F ;
Martin-Tanguy, J .
PLANT SCIENCE, 1999, 140 (02) :103-125
[9]   Copper-containing amine oxidases. Biogenesis and catalysis; a structural perspective [J].
Brazeau, BJ ;
Johnson, BJ ;
Wilmot, CM .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2004, 428 (01) :22-31
[10]  
BRIEGER L, 1885, Z PHYSL CHEM, V9, P1