Bio-functionalization of magnetite nanoparticles using an aminophosphonic acid coupling agent: new, ultradispersed, iron-oxide folate nanoconjugates for cancer-specific targeting

被引:111
作者
Das, Manasmita [1 ]
Mishra, Debasish [2 ]
Maiti, T. K. [2 ]
Basak, A. [1 ]
Pramanik, P. [1 ]
机构
[1] Indian Inst Technol, Dept Chem, Kharagpur 721302, W Bengal, India
[2] Indian Inst Technol, Dept Biotechnol, Kharagpur 721302, W Bengal, India
关键词
D O I
10.1088/0957-4484/19/41/415101
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The present study describes a systematic approach towards the design and development of novel, bio-functionalized, magneto-fluorescent nanoparticles for cancer-specific targeting. Biocompatible, hydrophilic, magneto-fluorescent nanoparticles with surface-pendant amine, carboxyl or aldehyde groups, to be later used for bio-conjugation, were designed using an aminophosphonic acid coupling agent. These magneto-fluorescent nanoparticles were further functionalized with folic acid, using diverse conjugation strategies. A series of new iron-oxide folate nanoconjugates with excellent aqueous dispersion stability and reasonably good hydrodynamic sizes under a wide range of physiological conditions were developed. These ultradispersed nanosystems were analyzed for their physicochemical properties and cancer-cell targeting ability, facilitated by surface modification with folic acid. The nanoparticle size, charge, surface chemistry, magnetic properties and colloidal stability were extensively studied using a variety of complementary techniques. Confocal microscopy, performed with folate receptor positive human cervical HeLa cancer cells, established that these non-cytotoxic iron-oxide folate nanoconjugates were effectively internalized by the target cells through receptor-mediated endocytosis. Cell-uptake behaviors of nanoparticles, studied using magnetically activated cell sorting (MACS), clearly demonstrated that cells over-expressing the human folate receptor internalized a higher level of these nanoparticle-folate conjugates than negative control cells.
引用
收藏
页数:14
相关论文
共 33 条
[1]   Phosphonic acid monolayers for binding of bioactive molecules to titanium surfaces [J].
Adden, Nina ;
Gamble, Lara J. ;
Castner, David G. ;
Hoffmann, Andrea ;
Gross, Gerhard ;
Menzel, Henning .
LANGMUIR, 2006, 22 (19) :8197-8204
[2]  
ALLEMANN E, 1993, EUR J PHARM BIOPHARM, V39, P173
[3]   Development of superparamagnetic nanoparticles for MRI: Effect of particle size, charge and surface nature on biodistribution [J].
Chouly, C ;
Pouliquen, D ;
Lucet, I ;
Jeune, JJ ;
Jallet, P .
JOURNAL OF MICROENCAPSULATION, 1996, 13 (03) :245-255
[4]   Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible [J].
De Palma, Randy ;
Peeters, Sara ;
Van Bael, Margriet J. ;
Van den Rul, Heidi ;
Bonroy, Kristien ;
Laureyn, Wim ;
Mullens, Jules ;
Borghs, Gustaaf ;
Maes, Guido .
CHEMISTRY OF MATERIALS, 2007, 19 (07) :1821-1831
[5]   DETERMINATION OF FREE AMINO GROUP CONTENT OF SERUM-ALBUMIN MICROCAPSULES USING TRINITROBENZENESULFONIC ACID - EFFECT OF VARIATIONS IN POLYCONDENSATION PH [J].
EDWARDSLEVY, F ;
ANDRY, MC ;
LEVY, MC .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 1993, 96 (1-3) :85-90
[6]   Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes: In vitro studies [J].
Gabizon, A ;
Horowitz, AT ;
Goren, D ;
Tzemach, D ;
Mandelbaum-Shavit, F ;
Qazen, MM ;
Zalipsky, S .
BIOCONJUGATE CHEMISTRY, 1999, 10 (02) :289-298
[7]  
GOLANDER CG, 1992, BIOTECHNICAL BIOMEDI, P221
[8]   Surface-modified superparamagnetic nanoparticles for drug delivery: Preparation, characterization, and cytotoxicity studies [J].
Gupta, AK ;
Wells, S .
IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2004, 3 (01) :66-73
[9]   MAGNETICALLY CONTROLLED TARGETED MICRO-CARRIER SYSTEMS [J].
GUPTA, PK ;
HUNG, CT .
LIFE SCIENCES, 1989, 44 (03) :175-186
[10]  
Knauth M, 2001, AM J NEURORADIOL, V22, P99