DNA segregation in bacteria

被引:115
作者
Gordon, GS [1 ]
Wright, A [1 ]
机构
[1] Tufts Univ, Dept Mol Biol & Microbiol, Boston, MA 02111 USA
关键词
chromosome; plasmid; partition; cellular localization;
D O I
10.1146/annurev.micro.54.1.681
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Segregation of DNA in bacterial cells is an efficient process that assures that every daughter cell receives a copy of genomic and plasmid DNA. In this review, we focus primarily on observations in recent years, including the visualization of DNA and proteins at the subcellular level, that have begun to define the events that separate DNA molecules. Unlike the process of chromosome segregation in higher cells, segregation of the bacterial chromosome is a continuous process in which chromosomes are separated as they are replicated. Essential to separation is the initial movement of sister origins to opposite ends of the cell. Subsequent replication and controlled condensation of DNA are the driving forces that move sister chromosomes toward their respective origins, which establishes the polarity required for segregation. Final steps in the resolution and separation of sister chromosomes occur at the replication terminus, which is localized at the cell center. In contrast to the chromosome, segregation of low-copy plasmids, such as Escherichia coli F, P1, and R1, is by mechanisms that resemble those used in eukaryotic cells. Each plasmid has a centromere-like site to which plasmid-specified partition proteins bind to promote segregation. Replication of plasmid DNA, which occurs at the cell center, is followed by rapid partition protein-mediated separation of sister plasmids, which become localized at distinct sites on either side of the division plane. The fundamental similarity between chromosome and plasmid segregation-placement of DNA to specific cell sites-implies an underlying cellular architecture to which both DNA and proteins refer.
引用
收藏
页码:681 / 708
页数:28
相关论文
共 136 条
[1]   THE ROLE OF TOPOISOMERASE-IV IN PARTITIONING BACTERIAL REPLICONS AND THE STRUCTURE OF CATENATED INTERMEDIATES IN DNA-REPLICATION [J].
ADAMS, DE ;
SHEKHTMAN, EM ;
ZECHIEDRICH, EL ;
SCHMID, MB ;
COZZARELLI, NR .
CELL, 1992, 71 (02) :277-288
[2]   A NOVEL ROLE FOR SITE-SPECIFIC RECOMBINATION IN MAINTENANCE OF BACTERIAL REPLICONS [J].
AUSTIN, S ;
ZIESE, M ;
STERNBERG, N .
CELL, 1981, 25 (03) :729-736
[3]   PARTITION-MEDIATED INCOMPATIBILITY OF BACTERIAL PLASMIDS [J].
AUSTIN, S ;
NORDSTROM, K .
CELL, 1990, 60 (03) :351-354
[4]   A NEW ESCHERICHIA-COLI CELL-DIVISION GENE, FTSK [J].
BEGG, KJ ;
DEWAR, SJ ;
DONACHIE, WD .
JOURNAL OF BACTERIOLOGY, 1995, 177 (21) :6211-6222
[5]   A SINGLE 43-BP SOPC REPEAT OF PLASMID MINI-F IS SUFFICIENT TO ALLOW ASSEMBLY OF A FUNCTIONAL NUCLEOPROTEIN PARTITION COMPLEX [J].
BIEK, DP ;
SHI, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (17) :8027-8031
[6]   Effect of growth rate and incC mutation on symmetric plasmid distribution by the IncP-1 partitioning apparatus [J].
Bignell, CR ;
Haines, AS ;
Khare, D ;
Thomas, CM .
MOLECULAR MICROBIOLOGY, 1999, 34 (02) :205-216
[7]  
BLAKELY G, 1991, NEW BIOL, V3, P789
[8]   2 RELATED RECOMBINASES ARE REQUIRED FOR SITE-SPECIFIC RECOMBINATION AT DIF AND CER IN ESCHERICHIA-COLI K12 [J].
BLAKELY, G ;
MAY, G ;
MCCULLOCH, R ;
ARCISZEWSKA, LK ;
BURKE, M ;
LOVETT, ST ;
SHERRATT, DJ .
CELL, 1993, 75 (02) :351-361
[9]  
BLAKELY GW, 1994, NUCLEIC ACIDS RES, V22, P5613
[10]   P1 ParA interacts with the P1 partition complex at parS and an ATP-ADP switch controls ParA activities [J].
Bouet, JY ;
Funnell, BE .
EMBO JOURNAL, 1999, 18 (05) :1415-1424