An addendum to Krein's formula

被引:43
作者
Gesztesy, F [1 ]
Makarov, KA [1 ]
Tsekanovskii, E [1 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jmaa.1998.5948
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide additional results in connection with Krein's formula, which describes the resolvent difference of two self-adjoint extensions A(1) and A(2) of a densely defined closed symmetric linear operator k with deficiency indices (n, n), n is an element of boolean OR{infinity}. In particular, we explicitly derive the linear fractional transformation relating the operator-valued Weyl-Titchmarsh M-functions M-1(z) and M-2(z) corresponding to A(1) and A(2). (C) 1998 Academic Press.
引用
收藏
页码:594 / 606
页数:13
相关论文
共 27 条
[1]  
Akhiezer N.I., 1993, THEORY LINEAR OPERAT
[2]  
Albeverio S., 1988, Solvable Models in Quantum Mechanics
[3]   ON A PROBLEM OF WEYL IN THE THEORY OF SINGULAR STURM-LIOUVILLE EQUATIONS [J].
ARONSZAJN, N .
AMERICAN JOURNAL OF MATHEMATICS, 1957, 79 (03) :597-610
[4]  
Derkach V., 1995, J MATH SCI, V73, P141
[5]   GENERALIZED RESOLVENTS AND THE BOUNDARY-VALUE-PROBLEMS FOR HERMITIAN OPERATORS WITH GAPS [J].
DERKACH, VA ;
MALAMUD, MM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 95 (01) :1-95
[6]   ON PERTURBATION OF SPECTRA [J].
DONOGHUE, WF .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1965, 18 (04) :559-&
[7]  
GESZTESY R, 1997, MATRIX VALUED HERGLO
[8]  
GESZTESY R, 1998, SOME APPL OPERATOR V
[9]  
Hassi S, 1997, ANN ACAD SCI FENN-M, V22, P123
[10]  
HASSI S, 1995, TOPICS OPERATOR THEO, P115